994 resultados para Anelastic relaxation methods
Resumo:
Background: Pregnancy is characterized by an inflammatory-like process and this may be exacerbated in preeclampsia. The heme oxygenase (HO) enzymes generate carbon monoxide (CO) that induces blood vessel relaxation and biliverdin that acts as an endogenous antioxidant. Materials and Methods: We examined the expression and localization of HO-1 and HO-2 in normal and preeclamptic placenta using reverse transcription polymerase chain reaction (RT-PCR), RNase protection assay, immunoblotting and immunohistochemistry. In addition, the effect of HO activation on tumor necrosis factor-alpha (TNF) induced placental damage and on feto-placental circulation was studied. Results: We provide the first evidence for the role of HO as an endogenous placental factor involved with cytoprotection and placental blood vessel relaxation. HO-1 was significantly higher at term, compared with first trimester placentae indicating its role in placental vascular development and regulation. HO-1 predominantly localized in the extravascular connective tissue that forms the perivascular contractile sheath around the developing blood vessels. HO-2 was localized in the capillaries, as well as the villous stroma, with weak staining of trophoblast. Induction of HO-1 caused a significant attenuation of TNF-mediated cellular damage in placental villous explants, as assessed by lactate dehydrogenase leakage (p 0.01). HO-1 protein was significantly reduced in placentae from pregnancies complicated with preeclampsia, compared with gestationally matched normal pregnancies. This suggests that the impairment of HO-1 activation may compromise the compensatory mechanism and predispose the placenta to cellular injury and subsequent maternal endothelial cell activation. Isometric contractility studies showed that hemin reduced vascular tension by 61% in U46619-preconstricted placental arteries. Hemininduced vessel relaxation and CO production was inhibited by HO inhibitor, tin protoporphyrin IX. Conclusions: Our findings establish HO-1 as an endogenous system that offers protection against cytotoxic damage in the placenta, identifies the HO-CO pathway to regulate feto-placental circulation and provides a new approach to study the disease of preeclampsia.
Resumo:
Highly doped polar semiconductors are essential components of today’s semiconductor industry. Most strikingly, transistors in modern electronic devices are polar semiconductor heterostructures. It is important to thoroughly understand carrier transport in such structures. In doped polar semiconductors, collective excitations of the carriers (plasmons) and the atoms (polar phonons) couple. These coupled collective excitations affect the electrical conductivity, here quantified through the carrier mobility. In scattering events, the carriers and the coupled collective modes transfer momentum between each other. Carrier momentum transferred to polar phonons can be lost to other phonons through anharmonic decay, resulting in a finite carrier mobility. The plasmons do not have a decay mechanism which transfers carrier momentum irretrievably. Hence, carrier-plasmon scattering results in infinite carrier mobility. Momentum relaxation due to either carrier–plasmon scattering or carrier–polar-phonon scattering alone are well understood. However, only this thesis manages to treat momentum relaxation due to both scattering mechanisms on an equal footing, enabling us to properly calculate the mobility limited by carrier–coupled plasmon–polar phonon scattering. We achieved this by solving the coupled Boltzmann equations for the carriers and the collective excitations, focusing on the “drag” term and on the anharmonic decay process of the collective modes. Our approach uses dielectric functions to describe both the carrier-collective mode scattering and the decay of the collective modes. We applied our method to bulk polar semiconductors and heterostructures where various polar dielectrics surround a semiconducting monolayer of MoS2, where taking plasmons into account can increase the mobility by up to a factor 15 for certain parameters. This screening effect is up to 85% higher than if calculated with previous methods. To conclude, our approach provides insight into the momentum relaxation mechanism for carrier–coupled collective mode scattering, and better tools for calculating the screened polar phonon and interface polar phonon limited mobility.