960 resultados para Anatomical Ontology Merging
Resumo:
Lexical Resources are a critical component for Natural Language Processing applications. However, the high cost of comparing and merging different resources has been a bottleneck to have richer resources with a broad range of potential uses for a significant number of languages.With the objective of reducing cost byeliminating human intervention, we present a new method for automating the merging of resources,with special emphasis in what we call the mapping step. This mapping step, which converts the resources into a common format that allows latter the merging, is usually performed with huge manual effort and thus makes the whole process very costly. Thus, we propose a method to perform this mapping fully automatically. To test our method, we have addressed the merging of two verb subcategorization frame lexica for Spanish, The resultsachieved, that almost replicate human work, demonstrate the feasibility of the approach.
Resumo:
Lexical Resources are a critical component for Natural Language Processing applications. However, the high cost of comparing and merging different resources has been a bottleneck to obtain richer resources and a broader range of potential uses for a significant number of languages. With the objective of reducing cost by eliminating human intervention, we present a new method towards the automatic merging of resources. This method includes both, the automatic mapping of resources involved to a common format and merging them, once in this format. This paper presents how we have addressed the merging of two verb subcategorization frame lexica for Spanish, but our method will be extended to cover other types of Lexical Resources. The achieved results, that almost replicate human work, demonstrate the feasibility of the approach.
Resumo:
Collaborative activities, in which students actively interact with each other, have proved to provide significant learning benefits. In Computer-Supported Collaborative Learning (CSCL), these collaborative activities are assisted by technologies. However, the use of computers does not guarantee collaboration, as free collaboration does not necessary lead to fruitful learning. Therefore, practitioners need to design CSCL scripts that structure the collaborative settings so that they promote learning. However, not all teachers have the technical and pedagogical background needed to design such scripts. With the aim of assisting teachers in designing effective CSCL scripts, we propose a model to support the selection of reusable good practices (formulated as patterns) so that they can be used as a starting point for their own designs. This model is based on a pattern ontology that computationally represents the knowledge captured on a pattern language for the design of CSCL scripts. A preliminary evaluation of the proposed approach is provided with two examples based on a set of meaningful interrelated patters computationally represented with the pattern ontology, and a paper prototyping experience carried out with two teaches. The results offer interesting insights towards the implementation of the pattern ontology in software tools.
Resumo:
The aim of the present study was to develop titles of Nursing Diagnoses and Outcomes (ND/NO) through the relationship between the terms of the Focus axis, limited to the Circulatory System Process, and the terms of other ICNP® axes and to integrate these terms into an ontology. Titles were developed linking 17 terms of the focus axis, which were evaluated by expert nurses in five Brazilian cities. Titles whose use concordance was above 0.80 were included in the ontology. In total, 89 titles for ND/NO were supported in the literature, and 19 were not supported; 37 were assessed as eligible for use in healthcare practice and were included in the ontology. The construction of ND/NO titles based on the ICNP® and using a formal representation of knowledge is a task that requires deepening concepts used for nursing and adequate classification revisions. The elaborated titles will facilitate the composition of diagnostics that are more consistent with practice.
A pedicled bone graft from the acromion: an anatomical investigation regarding surgical feasibility.
Resumo:
OBJECTIVE: To investigate the technical feasibility of harvesting a vascularized bone graft from the acromion pedicled on the acromial branch. BACKGROUND: Complex fractures of the proximal humerus may result in partial or total avascular necrosis of the head fragment. Treatment of avascular necrosis of the humeral head is dependent upon the stage of disease as well as the dimension and location of necrosis. In general, the outcome is poor and complete restoration of the shoulder function is rarely attained. Contrary to osteonecrosis of carpal bones (where vascularized bone grafts have been routinely carried out for decades), reports of analogous procedures at the humeral head are anecdotal. METHODS: Based on selective post-mortem computer-tomographic angiography of 5 and the dissection of 30 embalmed human cadaver shoulders, we describe the anatomy of the acromial branch of the thoracoacromial trunk. The main focus was the constancy of its anatomical course, its dimensions and potential use as a nutrient vessel for a pedicled bone graft from the acromion. RESULTS: The course of the acromial branch revealed a constant topographic relationship to anatomical landmarks. Its terminal branches reliably supplied the anterior part of the acromion. The vascularized bone graft could be sufficiently mobilized to allow tension-free transfer to the humeral head as well as to the lateral two-thirds of the clavicle. CONCLUSION: We demonstrated the feasibility of vascularized bone graft harvesting from the acromion. This technique could be a joint-preserving procedure for osteonecrosis of the humeral head or may assist in the revision of a clavicular pseudoarthrosis.
Resumo:
Introdução Hoje em dia, o conceito de ontologia (Especificação explícita de uma conceptualização [Gruber, 1993]) é um conceito chave em sistemas baseados em conhecimento em geral e na Web Semântica em particular. Entretanto, os agentes de software nem sempre concordam com a mesma conceptualização, justificando assim a existência de diversas ontologias, mesmo que tratando o mesmo domínio de discurso. Para resolver/minimizar o problema de interoperabilidade entre estes agentes, o mapeamento de ontologias provou ser uma boa solução. O mapeamento de ontologias é o processo onde são especificadas relações semânticas entre entidades da ontologia origem e destino ao nível conceptual, e que por sua vez podem ser utilizados para transformar instâncias baseadas na ontologia origem em instâncias baseadas na ontologia destino. Motivação Num ambiente dinâmico como a Web Semântica, os agentes alteram não só os seus dados mas também a sua estrutura e semântica (ontologias). Este processo, denominado evolução de ontologias, pode ser definido como uma adaptação temporal da ontologia através de alterações que surgem no domínio ou nos objectivos da própria ontologia, e da gestão consistente dessas alterações [Stojanovic, 2004], podendo por vezes deixar o documento de mapeamento inconsistente. Em ambientes heterogéneos onde a interoperabilidade entre sistemas depende do documento de mapeamento, este deve reflectir as alterações efectuadas nas ontologias, existindo neste caso duas soluções: (i) gerar um novo documento de mapeamento (processo exigente em termos de tempo e recursos computacionais) ou (ii) adaptar o documento de mapeamento, corrigindo relações semânticas inválidas e criar novas relações se forem necessárias (processo menos existente em termos de tempo e recursos computacionais, mas muito dependente da informação sobre as alterações efectuadas). O principal objectivo deste trabalho é a análise, especificação e desenvolvimento do processo de evolução do documento de mapeamento de forma a reflectir as alterações efectuadas durante o processo de evolução de ontologias. Contexto Este trabalho foi desenvolvido no contexto do MAFRA Toolkit1. O MAFRA (MApping FRAmework) Toolkit é uma aplicação desenvolvida no GECAD2 que permite a especificação declarativa de relações semânticas entre entidades de uma ontologia origem e outra de destino, utilizando os seguintes componentes principais: Concept Bridge – Representa uma relação semântica entre um conceito de origem e um de destino; Property Bridge – Representa uma relação semântica entre uma ou mais propriedades de origem e uma ou mais propriedades de destino; Service – São aplicados às Semantic Bridges (Property e Concept Bridges) definindo como as instâncias origem devem ser transformadas em instâncias de destino. Estes conceitos estão especificados na ontologia SBO (Semantic Bridge Ontology) [Silva, 2004]. No contexto deste trabalho, um documento de mapeamento é uma instanciação do SBO, contendo relações semânticas entre entidades da ontologia de origem e da ontologia de destino. Processo de evolução do mapeamento O processo de evolução de mapeamento é o processo onde as entidades do documento de mapeamento são adaptadas, reflectindo eventuais alterações nas ontologias mapeadas, tentando o quanto possível preservar a semântica das relações semântica especificadas. Se as ontologias origem e/ou destino sofrerem alterações, algumas relações semânticas podem tornar-se inválidas, ou novas relações serão necessárias, sendo por isso este processo composto por dois sub-processos: (i) correcção de relações semânticas e (ii) processamento de novas entidades das ontologias. O processamento de novas entidades das ontologias requer a descoberta e cálculo de semelhanças entre entidades e a especificação de relações de acordo com a ontologia/linguagem SBO. Estas fases (“similarity measure” e “semantic bridging”) são implementadas no MAFRA Toolkit, sendo o processo (semi-) automático de mapeamento de ontologias descrito em [Silva, 2004]. O processo de correcção de entidades SBO inválidas requer um bom conhecimento da ontologia/linguagem SBO, das suas entidades e relações, e de todas as suas restrições, i.e. da sua estrutura e semântica. Este procedimento consiste em (i) identificar as entidades SBO inválidas, (ii) a causa da sua invalidez e (iii) corrigi-las da melhor forma possível. Nesta fase foi utilizada informação vinda do processo de evolução das ontologias com o objectivo de melhorar a qualidade de todo o processo. Conclusões Para além do processo de evolução do mapeamento desenvolvido, um dos pontos mais importantes deste trabalho foi a aquisição de um conhecimento mais profundo sobre ontologias, processo de evolução de ontologias, mapeamento etc., expansão dos horizontes de conhecimento, adquirindo ainda mais a consciência da complexidade do problema em questão, o que permite antever e perspectivar novos desafios para o futuro.
Resumo:
The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources.
Resumo:
This file contains the complete ontology (OntoProcEDUOC_OKI_Final.owl). At loading time to edit, the OKI ontology corresponding to the implementation level (OntoOKI_DEFINITIVA.owl)must be imported.
Resumo:
A cutaneous horn was observed close to the free margin of the inferior right eyelid in a 26-year-old-male patient. A minimal resection was primarily performed. Histopathologic study disclosed a precancerous keratosis. As the tumor had not been entirely excised, a complementary resection was performed secondarily to obtain the entire resection of the tumor.
Resumo:
In this paper we propose a novel unsupervised approach to learning domain-specific ontologies from large open-domain text collections. The method is based on the joint exploitation of Semantic Domains and Super Sense Tagging for Information Retrieval tasks. Our approach is able to retrieve domain specific terms and concepts while associating them with a set of high level ontological types, named supersenses, providing flat ontologies characterized by very high accuracy and pertinence to the domain.
Resumo:
Tractography algorithms provide us with the ability to non-invasively reconstruct fiber pathways in the white matter (WM) by exploiting the directional information described with diffusion magnetic resonance. These methods could be divided into two major classes, local and global. Local methods reconstruct each fiber tract iteratively by considering only directional information at the voxel level and its neighborhood. Global methods, on the other hand, reconstruct all the fiber tracts of the whole brain simultaneously by solving a global energy minimization problem. The latter have shown improvements compared to previous techniques but these algorithms still suffer from an important shortcoming that is crucial in the context of brain connectivity analyses. As no anatomical priors are usually considered during the reconstruction process, the recovered fiber tracts are not guaranteed to connect cortical regions and, as a matter of fact, most of them stop prematurely in the WM; this violates important properties of neural connections, which are known to originate in the gray matter (GM) and develop in the WM. Hence, this shortcoming poses serious limitations for the use of these techniques for the assessment of the structural connectivity between brain regions and, de facto, it can potentially bias any subsequent analysis. Moreover, the estimated tracts are not quantitative, every fiber contributes with the same weight toward the predicted diffusion signal. In this work, we propose a novel approach for global tractography that is specifically designed for connectivity analysis applications which: (i) explicitly enforces anatomical priors of the tracts in the optimization and (ii) considers the effective contribution of each of them, i.e., volume, to the acquired diffusion magnetic resonance imaging (MRI) image. We evaluated our approach on both a realistic diffusion MRI phantom and in vivo data, and also compared its performance to existing tractography algorithms.
Resumo:
The aim of this work was to study the distribution and cellular localization of GLUT2 in the rat brain by light and electron microscopic immunohistochemistry, whereas our ultrastructural observations will be reported in a second paper. Confirming previous results, we show that GLUT2-immunoreactive profiles are present throughout the brain, especially in the limbic areas and related nuclei, whereas they appear most concentrated in the ventral and medial regions close to the midline. Using cresyl violet counterstaining and double immunohistochemical staining for glial or neuronal markers (GFAp, CAII and NeuN), we show that two limited populations of oligodendrocytes and astrocytes cell bodies and processes are immunoreactive for GLUT2, whereas a cross-reaction with GLUT1 cannot be ruled out. In addition, we report that the nerve cell bodies clearly immunostained for GLUT2 were scarce (although numerous in the dentate gyrus granular layer in particular), whereas the periphery of numerous nerve cells appeared labeled for this transporter. The latter were clustered in the dorsal endopiriform nucleus and neighboring temporal and perirhinal cortex, in the dorsal amygdaloid region, and in the paraventricular and reuniens thalamic nuclei, whereas they were only a few in the hypothalamus. Moreover, a group of GLUT2-immunoreactive nerve cell bodies was localized in the dorsal medulla oblongata while some large multipolar nerve cell bodies peripherally labeled for GLUT2 were scattered in the caudal ventral reticular formation. This anatomical localization of GLUT2 appears characteristic and different from that reported for the neuronal transporter GLUT3 and GLUT4. Indeed, the possibility that GLUT2 may be localized in the sub-plasmalemnal region of neurones and/or in afferent nerve fibres remains to be confirmed by ultrastructural observations. Because of the neuronal localization of GLUT2, and of its distribution relatively similar to glucokinase, it may be hypothesized that this transporter is, at least partially, involved in cerebral glucose sensing.
Resumo:
In order to interact with the multisensory world that surrounds us, we must integrate various sources of sensory information (vision, hearing, touch...). A fundamental question is thus how the brain integrates the separate elements of an object defined by several sensory components to form a unified percept. The superior colliculus was the main model for studying multisensory integration. At the cortical level, until recently, multisensory integration appeared to be a characteristic attributed to high-level association regions. First, we describe recently observed direct cortico-cortical connections between different sensory cortical areas in the non-human primate and discuss the potential role of these connections. Then, we show that the projections between different sensory and motor cortical areas and the thalamus enabled us to highlight the existence of thalamic nuclei that, by their connections, may represent an alternative pathway for information transfer between different sensory and/or motor cortical areas. The thalamus is in position to allow a faster transfer and even an integration of information across modalities. Finally, we discuss the role of these non-specific connections regarding behavioral evidence in the monkey and recent electrophysiological evidence in the primary cortical sensory areas.
Resumo:
About 15 years ago, the Swiss Society of Pathology has developed and implemented a board examination in anatomical pathology. We describe herein the contents covered by this 2-day exam (autopsy pathology, cytology, histopathology, molecular pathology, and basic knowledge about mechanisms of disease) and its exact modalities, sketch a brief history of the exam, and finish with a concise discussion about the possible objectives and putative benefits weighed against the hardship that it imposes on the candidates.