938 resultados para Amidation reactions
Resumo:
Abstract is not available.
Resumo:
Abstract is not available.
Resumo:
Direct synthesis of unsymmetrical beta-sulfonamido disulfides by ring-opening of aziridines by using benzyltriethyl-ammonium tetrathiomolybdate 1 as a sulfur transfer reagent in the presence of symmetrical disulfides as thiol equivalents has been reported. Reaction of benzyl and alkyl disulfides gave unsymmetrical beta-sulfonamido disulfides as the only product in very good yields. From the Study, it has been observed that aryl disulfides containing p-NO2, p-Cl, and p-CN led to the formation of the corresponding beta-aminosulfides as the exclusive products. However, un-substituted aryl disulfides and the one containing electron-donating substituents (p-Me) provide a mixture of beta-sulfonamido mono- and disulfides as the products.
Resumo:
The effect of pH and metal ions (Cu2+, Zn2+, Cd2+, Mn2+, Cr3+, Co3+, and Mg2+) on the decyclization reactions of pyridoxal-histamine cyclized Schiff base has been studied using electronic spectroscopy. The study reveals that the cyclization reaction is irreversible with respect to pH and metal ions. Interest in this work derives from the possible involvement of cyclization reactions in the inhibitory activity of a number of pyridoxal-dependent enzymes.
Resumo:
Terminal oxidases are the final proteins of the respiratory chain in eukaryotes and some bacteria. They catalyze most of the biological oxygen consumption on Earth done by aerobic organisms. During the catalytic reaction terminal oxidases reduce dioxygen to water and use the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-driven proton pump. This membrane gradient of protons is extremely important for cells as it is used for many cellular processes, such as transportation of substrates and ATP synthesis. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. In this work we have applied a complex approach using a variety of different techniques to address the properties and the mechanism of proton translocation by the terminal oxidases. The combination of direct measurements of pH changes during catalytic turnover, time-resolved potentiometric electrometry and optical spectroscopy, made it possible to obtain valuable information about various aspects of oxidase functioning. We compared oxygen binding properties of terminal oxidases from the distinct heme-copper (CcO) and cytochrome bd families and found that cytochrome bd has a high affinity for oxygen, which is 3 orders of magnitude higher than that of CcO. Interestingly, the difference between CcO and cytochrome bd is not only in higher affinity of the latter to oxygen, but also in the way that each of these enzymes traps oxygen during catalysis. CcO traps oxygen kinetically - the molecule of bound dioxygen is rapidly reduced before it can dissociate. Alternatively, cytochrome bd employs an alternative mechanism of oxygen trapping - part of the redox energy is invested into tight oxygen binding, and the price paid for this is the lack of proton pumping. A single cycle of oxygen reduction to water is characterized by translocation of four protons across the membrane. Our results make it possible to assign the pumping steps to discrete transitions of the catalytic cycle and indicate that during in vivo turnover of the oxidase these four protons are transferred, one at a time, during the P→F, F→OH, Oh→Eh, and Eh→R transitions. At the same time, each individual proton translocation step in the catalytic cycle is not just a single reaction catalyzed by CcO, but rather a complicated sequence of interdependent electron and proton transfers. We assume that each single proton translocation cycle of CcO is assured by internal proton transfer from the conserved Glu-278 to an as yet unidentified pump site above the hemes. Delivery of a proton to the pump site serves as a driving reaction that forces the proton translocation cycle to continue.
Resumo:
Spatial variations in the concentration of a reactive solute in solution are often encountered in a catalyst particle, and this leads to variation in the freezing point of the solution. Depending on the operating temperature, this can result in freezing of the solvent oil a portion of catalyst, rendering that part of the active area ineffective Freezing call occur by formation of a sharp front or it mush that separates the solid and fluid phases. In this paper, we model the extent of reduction in the active area due to freezing. Assuming that the freezing point decreases linearly with solute concentration, conditions for freezing to occur have been derived. At steady state, the ineffective fraction of catalyst pellet is found to be the same irrespective of the mode of freezing. Progress of freezing is determined by both the heat of reaction and the latent heat of fusion Unlike in freezing of alloys where the latter plays a dominant role, the exothermicity of the reaction has a significant effect on freezing in the presence of chemical reactions. A dimensionless group analogous to the Stefan number could be defined to capture the combined effect of both of these.
Resumo:
N-doped TiO2 nanofibres were observed to possess lower aerobic oxidation activity than undoped TiO2 nanofibres in the selective photocatalytic aerobic oxidation of enzylamine and 4-methoxybenzyl alcohol. This was attributed to the reduction free energy of O2 adsorption in the vicinity of nitrogen dopant sites, as indicated by density functional theory (DFT) calculations when three-coordinated oxygen atoms are substituted by nitrogen atoms. It was found that the activity recovered following a controlled calcination of the N-doped NFs in air. The dependence of the conversion of benzylamine and 4-methoxybenzyl alcohol on the intensity of light irradiation confirmed that these reactions were driven by light. Action spectra showed that the two oxidation reactions are responsive to light from the UV region through to the visible light irradiation range. The extended light absorption wavelength range in these systems compared to pure TiO2 materials was found to result from the formation of surface complex species following adsorption of reactants onto the catalysts' surface, evidenced by the in situ IR experiment. Both catalytic and in situ IR results reveal that benzaldehyde is the intermediate in the aerobic oxidation of benzylamine to N-benzylidenebenzylamine process.
Resumo:
It is demonstrated that the titled reactions are best carried out at high concentrations, as indicated by mechanistic considerations: the observed high reaction orders and the possibility that the Cannizzaro reaction is driven by the hydrophobic effect, which effects proximity between the two molecules of the aldehyde reactant. The present studies have led to improved conditions, simplified workup, and excellent yields of products. The Tishchenko reaction converted benzaldehyde to benzyl benzoate with catalytic NaOMe/tetrahydrafuran in good yield, which is apparently unprecedented for this product of high commercial value.
Resumo:
Transforming growth factor β signalling through Smad3 in allergy Allergic diseases, such as atopic dermatitis, asthma, and contact dermatitis are complex diseases influenced by both genetic and environmental factors. It is still unclear why allergy and subsequent allergic disease occur in some individuals but not in others. Transforming growth factor (TGF)-β is an important immunomodulatory and fibrogenic factor that regulates cellular processes in injured and inflamed skin. TGF-β has a significant role in the regulation of the allergen-induced immune response participating in the development of allergic and asthmatic inflammation. TGF-β is known to be an immunomodulatory factor in the progression of delayed type hypersensitivity reactions and allergic contact dermatitis. TGF-β is crucial in regulating the cellular responses involved in allergy, such as differentiation, proliferation and migration. TGF-β signals are delivered from the cytoplasm to the nucleus by TGF-β signal transducers called Smads. Smad3 is a major signal transducer in TGF-β -signalling that controls the expression of target genes in the nucleus in a cell-type specific manner. The role of TGF-β-Smad3 -signalling in the immunoregulation and pathophysiology of allergic disorders is still poorly understood. In this thesis, the role of TGF-β-Smad -signalling pathway using Smad3 -deficient knock out mice in the murine models of allergic diseases; atopic dermatitis, asthma and allergic contact reactions, was examined. Smad3-pathway regulates allergen induced skin inflammation and systemic IgE antibody production in a murine model atopic dermatitis. The defect in Smad3 -signalling decreased Th2 cytokine (IL-13 and IL-5) mRNA expression in the lung, modulated allergen induced specific IgG1 response, and affected mucus production in the lung in a murine model of asthma. TGF-β / Smad3 -signalling contributed to inflammatory hypersensitivity reactions and disease progression via modulation of chemokine and cytokine expression and inflammatory cell recruitment, cell proliferation and regulation of the specific antibody response in a murine model of contact hypersensitivity. TGF-β modulates inflammatory responses - at least partly through the Smad3 pathway - but also through other compensatory, non-Smad-dependent pathways. Understanding the effects of the TGF-β signalling pathway in the immune system and in disease models can help in elucidating the multilevel effects of TGF-β. Unravelling the mechanisms of Smad3 may open new possibilities for treating and preventing allergic responses, which may lead to severe illness and loss of work ability. In the future the Smad3 signalling pathway might be a potential target in the therapy of allergic diseases.
Resumo:
Barrierless chemical reactions have often been modeled as a Brownian motion on a one-dimensional harmonic potential energy surface with a position-dependent reaction sink or window located near the minimum of the surface. This simple (but highly successful) description leads to a nonexponential survival probability only at small to intermediate times but exponential decay in the long-time limit. However, in several reactive events involving proteins and glasses, the reactions are found to exhibit a strongly nonexponential (power law) decay kinetics even in the long time. In order to address such reactions, here, we introduce a model of barrierless chemical reaction where the motion along the reaction coordinate sustains dispersive diffusion. A complete analytical solution of the model can be obtained only in the frequency domain, but an asymptotic solution is obtained in the limit of long time. In this case, the asymptotic long-time decay of the survival probability is a power law of the Mittag−Leffler functional form. When the barrier height is increased, the decay of the survival probability still remains nonexponential, in contrast to the ordinary Brownian motion case where the rate is given by the Smoluchowski limit of the well-known Kramers' expression. Interestingly, the reaction under dispersive diffusion is shown to exhibit strong dependence on the initial state of the system, thus predicting a strong dependence on the excitation wavelength for photoisomerization reactions in a dispersive medium. The theory also predicts a fractional viscosity dependence of the rate, which is often observed in the reactions occurring in complex environments.
Resumo:
The half-sandwhich ruthenium chloro complexes bearing chelated diphosphazane ligands, [(eta(5)-Cp)RuCl{kappa(2)-P,P-(RO)(2)PN(Me)P(OR)(2)}] [R = C6H3Me2-2,6] (1) and [(eta(5)-Cp*)RuCl{kappa(2)-P, P-X2PN(R)PYY'}] [R = Me, X = Y = Y' = OC6H5 (2); R = CHMe2, X-2 = C20H12O2, Y = Y' = OC6H5 (3) or OC6H4'Bu-4 (4)] have been prepared by the reaction of CpRu(PPh3)(2)Cl with (RO)(2)PN(Me)P(OR)(2) [R = C6H3Me2-2,6 (L-1)] or by the reaction of [Cp*RuCl2](n) with X2PN(R)PYY' in the presence of zinc dust. Among the four diastereomers (two enantiomeric pairs) possible for the "chiral at metal" complexes 3 and 4, only two diastereomers (one enantiomeric pair) are formed in these reactions. The complexes 1, 2, 4 and [(eta(5)-Cp)RuCl {kappa(2)-P,P-Ph2PN((S)-*CHMePh)PPhY)] [Y = Ph (5) or N2C3HMe2-3,5 (SCSPRRu)-(6)] react with NaOMe to give the corresponding hydride complexes [(eta(5) -Cp)RuH {kappa(2)-P,P-(RO)(2)PN(Me)P(OR)(2)}] (7), [(eta(5)-Cp*)RuH {kappa(2)-P,P'-X2PN(R)PY2)] [R = Me, X = Y = OC6H5 (8); R = CHMe2, X-2 = C20H12O2, Y = OC6H4'Bu-4 (9)] and [(eta(5) -Cp)RuH(kappa(2)-P, P-Ph2PN((S)-*CHMePh)PPhY)][Y =Ph (10) or N2C3HMe2-3,5 (SCSPRRu)(11a) and (SCSPSRu)-(11b)]. Only one enantiomeric pair of the hydride 9 is obtained from the chloro precursor 4 that bears sterically bulky substituents at the phosphorus centers. On the other hand, the optically pure trichiral complex 6 that bears sterically less bulky substituents at the phosphorus gives a mixture of two diastereomers (11a and 11b). Protonation of complex 7 using different acids (HX) gives a mixture of [(eta(5)- Cp)Ru(eta(2)-H-2){kappa(2)-P, P-(RO)(2)PN(Me)P(OR)(2))]X (12a) and [(eta(5)-Cp)Ru(H)(2){kappa(2)-P, P-(RO)(2)PN(Me)P(OR)(2)}]X (12b) of which 12a is the major product independent of the acid used; the dihydrogen nature of 12a is established by T, measurements and also by synthesizing the deuteride analogue 7-D followed by protonation to obtain the D-H isotopomer. Preliminary investigations on asymmetric transfer hydrogenation of 2-acetonaphthone in the presence of a series of chiral diphosphazane ligands show that diphosphazanes in which the phosphorus centers are strong pi-acceptor in character and bear sterically bulky substituents impart moderate levels of enantioselectivity. Attempts to identify the hydride intermediate involved in the asymmetric transfer hydrogenation by a model reaction suggests that a complex of the type, [Ru(H)(Cl){kappa(2)-P,P-X2PN(R)PY2)(solvent)(2)] could be the active species in this transformation. (c) 2007 Elsevier B.V. All rights reserved.