873 resultados para Amenity migration
Resumo:
The details of cage-to-cage migration have been obtained from an analysis of the molecular dynamics trajectory of a probe adsorbate. It is observed that particles utilize the region within a radius of 2 angstrom from the window center but with diffusion taking place predominantly at 1.6 angstrom from the window center and a potential energy of nearly -12 kJ/mol. A barrier of about 0.5 kJ/mol is observed for surface-mediated diffusion. Surprisingly, for diffusion without surface mediation for a particle going from one cage center to another, there is an attractive well near the window instead of a barrier. At low adsorbate concentrations and room temperature, the predominant mode for cage-to-cage migration is surface-mediated diffusion. The analysis suggests that particles slide along the surface of the inner walls of the alpha-cages during migration from one cage to another.
Resumo:
Glioblastoma (GBM; grade IV astrocytoma) is the most malignant and common primary brain tumor in adults. Using combination of 2-DE and MALDI-TOF MS, we analyzed 14 GBM and 6 normal control sera and identified haptoglobin alpha 2 chain as an up-regulated serum protein in GBM patients. GBM-specific up-regulation was confirmed by ELISA based quantitation of haptoglobin (Hp) in the serum of 99 GBM patients as against lower grades (49 grade III/AA; 26 grade II/DA) and 26 normal individuals (p = 0.0001). Further validation using RT-qPCR on an independent set (n = 78) of tumor and normal brain (n = 4) samples and immunohistochemcial staining on a subset (n = 42) of above samples showed increasing levels of transcript and protein with tumor grade and were highest in GBM (p = < 0.0001 and < 0.0001, respectively). Overexpression of Hp either by stable integration of Hp cDNA or exogenous addition of purified Hp to immortalized astrocytes resulted in increased cell migration. RNAi-mediated silencing of Hp in glioma cells decreased cell migration. Further, we demonstrate that both human glioma and mouse melanoma cells overexpressing Hp showed increased tumor growth. Thus, we have identified haptoglobin as a GBM-specific serum marker with a role on glioma tumor growth and migration.
Resumo:
The European Union has agreed on implementing the Policy Coherence for Development (PCD) principle in all policy sectors that are likely to have a direct impact on developing countries. This is in order to take account of and support the EU development cooperation objectives and the achievement of the internationally agreed Millennium Development Goals. The common EU migration policy and the newly introduced EU Blue Card directive present an example of the implementation of the principle in practice: the directive is not only designed to respond to the occurring EU labour demand by attracting highly skilled third-country professionals, but is also intended to contribute to the development objectives of the migrant-sending developing countries, primarily through the tool of circular migration and the consequent skills transfers. My objective in this study is to assess such twofold role of the EU Blue Card and to explore the idea that migration could be harnessed for the benefit of development in conformity with the notion that the two form a positive nexus. Seeing that the EU Blue Card fails to differentiate the most vulnerable countries and sectors from those that are in a better position to take advantage of the global migration flows, the developmental consequences of the directive must be accounted for even in the most severe settings. Accordingly, my intention is to question whether circular migration, as claimed, could address the problem of brain drain in the Malawian health sector, which has witnessed an excessive outflow of its professionals to the UK during the past decade. In order to assess the applicability, likelihood and relevance of circular migration and consequent skills transfers for development in the Malawian context, a field study of a total of 23 interviews with local health professionals was carried out in autumn 2010. The selected approach not only allows me to introduce a developing country perspective to the on-going discussion at the EU level, but also enables me to assess the development dimension of the EU Blue Card and the intended PCD principle through a local lens. Thus these interviews and local viewpoints are at the very heart of this study. Based on my findings from the field, the propensity of the EU Blue Card to result in circular migration and to address the persisting South-North migratory flows as well as the relevance of skills transfers can be called to question. This is as due to the bias in its twofold role the directive overlooks the importance of the sending country circumstances, which are known to determine any developmental outcomes of migration, and assumes that circular migration alone could bring about immediate benefits. Without initial emphasis on local conditions, however, positive outcomes for vulnerable countries such as Malawi are ever more distant. Indeed it seems as if the EU internal interests in migration policy forbid the fulfilment of the PCD principle and diminish the attempt to harness migration for development to bare rhetoric.
Resumo:
Likely spatial distributions of network-modifying (and mobile) cations in (oxide) glasses are discussed here. At very low modifier concentrations, the ions form dipoles with non-bridging oxygen centres while, at higher levels of modification, the cations tend to order as a result of Coulombic interactions. Activation energies for cation migration are calculated, assuming that the ions occupy (face-sharing) octahedral sites. It is found that conductivity activation energy decreases markedly with increasing modifier content, in agreement with experiment.
Resumo:
Laboratory advection-diffusion tests are performed on two regional soils-Brown Earth and Red Earth-in order to assess their capacity to control contaminant migration with synthetic contaminant solution of sodium sulphate with sodium concentration of 1000 mg/L. The test was designed to study the transport/attenuation behaviour of sodium in the presence of sulphate. Effective diffusion coefficient (De) that takes into consideration of attenuation processes is used. Cation exchange capacity is an important factor for the attenuation of cationic species. Monovalent sodium ion cannot usually replace other cations and the retention of sodium ion is very less. This is particularly true when chloride is anion is solution. However, sulphate is likely to play a role in the attenuation of sodium. Cation exchange capacity and type of exchangeable ions of soils are likely to play an important role. The effect of sulphate ions on the effective diffusion coefficient of sodium, in two different types of soils, of different cation exchange capacity has been studied. The effective diffusion coefficients of sodium ion for both the soils were calculated using Ogata Bank’s equation. It was shown that effective diffusion coefficient of sodium in the presence of sulphate is lower for Brown Earth than for Red Earth due to exchange of sodium with calcium ions from the exchangeable complex of clay. The soil with the higher cation exchange retained more sodium. Consequently, the breakthrough times and the number of pore volumes of sodium ion increase with the cation exchange capacity of soil.
Resumo:
Nanoindentation and scratch experiments on 1:1 donor-acceptor complexes, 1 and 2, of 1,2,4,5-tetracyanobenzene with pyrene and phenanthrene, respectively, reveal long-range molecular layer gliding and large interaction anisotropy. Due to the layered arrangements in these crystals, these experiments that apply stress in particular directions result in the breaking of interlayer interactions, thus allowing molecular sheets to glide over one another with ease. Complex 1 has a layered crystal packing wherein the layers are 68° skew under the (002) face and the interlayer space is stabilized by van der Waals interactions. Upon indenting this surface with a Berkovich tip, pile-up of material was observed on just one side of the indenter due to the close angular alignment of the layers with the half angle of the indenter tip (65.35°). The interfacial differences in the elastic modulus (21 ) and hardness (16 ) demonstrate the anisotropic nature of crystal packing. In 2, the molecular stacks are arranged in a staggered manner; there is no layer arrangement, and the interlayer stabilization involves C-H�N hydrogen bonds and ��� interactions. This results in a higher modulus (20 ) for (020) as compared to (001), although the anisotropy in hardness is minimal (4 ). The anisotropy within a face was analyzed using AFM image scans and the coefficient of friction of four orthogonal nanoscratches on the cleavage planes of 1 and 2. A higher friction coefficient was obtained for 2 as compared to 1 even in the cleavage direction due to the presence of hydrogen bonds in the interlayer region making the tip movement more hindered. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
S100A2, an EF hand calcium-binding protein, is a potential biomarker in several cancers and is also a TGF-beta (transforming growth factor-beta)-regulated gene in melanoma and lung cancer cells. However, the mechanism of S100A2 regulation by TGF-beta and its significance in cancer progression remains largely unknown. In the present study we report the mechanism of S100A2 regulation by TGF-beta and its possible role in TGF-beta-mediated tumour promotion. Characterization of the S100A2 promoter revealed an AP-1 (activator protein-1) element at positions -1161 to -1151 as being the most critical factor for the TGF-beta 1 response. Chromatin immunoprecipitation and electrophoretic mobility-shift assays confirmed the functional binding of the AP-1 complex, predominantly JunB, to the S100A2 promoter in response to TGF-beta 1 in HaCaT keratinocytes. JunB overexpression markedly stimulated the S100A2 promoter which was blocked by the dominant-negative JunB and MEK1 MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 1] inhibitor, PD98059. Intriguingly, despite the presence of a putative SMAD-binding element, S100A2 regulation by TGF-beta 1 was found to be SMAD3 independent. Interestingly, p53 protein and TGF-beta 1 show synergistic regulation of the S100A2 promoter. Finally, knockdown of S100A2 expression compromised TGF-beta 1-induced cell migration and invasion of Hep3B cells. Together our findings highlight an important link between the TGF-beta 1-induced MAPK and p53 signalling pathways in the regulation of S100A2 expression and pro-tumorigenic actions.
Resumo:
Charnockite is considered to be generated either through the dehydration of granitic magma by CO2 purging or by solid-state dehydration through CO2 metasomatism during granulite facies metamorphism. To understand the extent of dehydration, CO2 migration is quantitatively modeled in silicate melt and metasomatic fluid as a function of temperature, H2O wt%, pressure, basal CO2 flux and dynamic viscosity. Numerical simulations show that CO2 advection through porous and permeable high-grade metamorphic rocks can generate dehydrated patches close to the CO2 flow path, as illustrated by the occurrences of ``incipient charnockites.'' CO2 reaction-front velocity constrained by field observations is 0.69 km/m.y., a reasonable value, which matches well with other studies. On the other hand, temperature, rate of cooling, and basal CO2 flux are the critical parameters affecting CO2 diffusion through a silicate melt. CO2 diffusion through silicate melt can only occur at temperature greater than 840 degrees C and during slow cooling (<= 3.7 x 10(-5) degrees C/yr), features that are typical of magma emplacement in the lower crust. Stalling of CO2 fluxing at similar to 840 degrees C explains why some deep-level plutons contain both hydrous and anhydrous (charnockitic) mineral assemblages. CO2 diffusion through silicate melt is virtually insensitive to pressure. Addition of CO2 basal flux facilitates episodic dehydrated melt migration by generating fracture pathways.
Resumo:
The migration of a metal atom in a metal olefin complex from one pi face of the olefin to the opposite pi face has been rarely documented. Gladysz and co-workers showed that such a movement is indeed possible in monosubstituted chiral Re olefin complexes, resulting in diastereomerization. Interestingly, this isomerization occurred without dissociation, and on the basis of kinetic isotope effects, the involvement of a trans C-H bond was indicated. Either oxidative addition or an agostic interaction of the vinylic C-H(D) bond with the metal could account for the experimentally observed kinetic isotope effect. In this study we compute the free energy of activation for the migration of Re from one enantioface of the olefin to the other through various pathways. On the basis of DFT calculations at the B3LYP level we show that a trans (C-H)center dot center dot center dot Re interaction and trans C-H oxidative addition provide a nondissociative path for the diastereomerization. The trans (C-H)center dot center dot center dot Re interaction path is computed to be more favorable by 2.3 kcal mol(-1) than the oxidative addition path. While direct experimental evidence was not able to discount the migration of the metal through the formation of a eta(2)-arene complex (conducted tour mechanism), computational results at the B3LYP level show that it is energetically more expensive. Surprisingly, a similar analysis carried out at the M06 level computes a lower energy path for the conducted tour mechanism and is not consistent with the experimental isotope effects observed. Metal-(C-H) interactions and oxidative additions of the metal into C-H bonds are closely separated in energy and might contribute to unusual fluxional processes such as this diastereomerization.
Resumo:
Aqueous dispersions of graphene oxide (GO) exhibit strong pH-dependent fluorescence in the visible that originates, in part, from the oxygenated functionalities present. Here we examine the spectral migration on nanosecond time-scales of the pH dependent features in the fluorescence spectra. We show, from time-resolved emission spectra (TRES) constructed from the wavelength dependent fluorescence decay curves, that the migration is associated with excited state proton transfer. Both `intramolecular' and `intermolecular' transfer involving the quasi-molecular oxygenated aromatic fragments are observed. As a prerequisite to the time-resolved measurements, we have correlated the changes in the steady state fluorescence spectra with the sequence of dissociation events that occur in GO dispersions at different values of pH.
Resumo:
Today's programming languages are supported by powerful third-party APIs. For a given application domain, it is common to have many competing APIs that provide similar functionality. Programmer productivity therefore depends heavily on the programmer's ability to discover suitable APIs both during an initial coding phase, as well as during software maintenance. The aim of this work is to support the discovery and migration of math APIs. Math APIs are at the heart of many application domains ranging from machine learning to scientific computations. Our approach, called MATHFINDER, combines executable specifications of mathematical computations with unit tests (operational specifications) of API methods. Given a math expression, MATHFINDER synthesizes pseudo-code comprised of API methods to compute the expression by mining unit tests of the API methods. We present a sequential version of our unit test mining algorithm and also design a more scalable data-parallel version. We perform extensive evaluation of MATHFINDER (1) for API discovery, where math algorithms are to be implemented from scratch and (2) for API migration, where client programs utilizing a math API are to be migrated to another API. We evaluated the precision and recall of MATHFINDER on a diverse collection of math expressions, culled from algorithms used in a wide range of application areas such as control systems and structural dynamics. In a user study to evaluate the productivity gains obtained by using MATHFINDER for API discovery, the programmers who used MATHFINDER finished their programming tasks twice as fast as their counterparts who used the usual techniques like web and code search, IDE code completion, and manual inspection of library documentation. For the problem of API migration, as a case study, we used MATHFINDER to migrate Weka, a popular machine learning library. Overall, our evaluation shows that MATHFINDER is easy to use, provides highly precise results across several math APIs and application domains even with a small number of unit tests per method, and scales to large collections of unit tests.