985 resultados para Ambient Scent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the evolution of localized blobs of swirling or buoyant fluid in an infinite, inviscid, electrically conducting fluid. We consider the three cases of a strong imposed magnetic field, a weak imposed magnetic field, and no magnetic field. For a swirling blob in the absence of a magnetic field, we find, in line with others, that the blob bursts radially outward under the action of the centrifugal force, forming a thin annular vortex sheet. A simple model of this process predicts that the vortex sheet thins exponentially fast and that it moves radially outward with constant velocity. These predictions are verified by high-resolution numerical simulations. When an intense magnetic field is applied, this phenomenon is suppressed, with the energy and angular momentum of the blob now diffusing axially along the magnetic field lines, converting the blob into a columnar structure. For modest or weak magnetic fields, there are elements of both types of behavior, with the radial bursting dominating over axial diffusion for weak fields. However, even when the magnetic field is very weak, the flow structure is quite distinct to that of the nonmagnetic case. In particular, a small but finite magnetic field places a lower bound on the thickness of the annular vortex sheet and produces an annulus of counter-rotating fluid that surrounds the vortex core. The behavior of the buoyant blob is similar. In the absence of a magnetic field, it rapidly develops the mushroomlike shape of a thermal, with a thin vortex sheet at the top and sides of the mushroom. Again, a simple model of this process predicts that the vortex sheet at the top of the thermal thins exponentially fast and rises with constant velocity. These predictions are consistent with earlier numerical simulations. Curiously, however, it is shown that the net vertical momentum associated with the blob increases linearly in time, despite the fact that the vertical velocity at the front of the thermal is constant. As with the swirling blob, an imposed magnetic field inhibits the formation of a vortex sheet. A strong magnetic field completely suppresses the phenomenon, replacing it with an axial diffusion of momentum, while a weak magnetic field allows the sheet to form, but places a lower bound on its thickness. The magnetic field does not, however, change the net vertical momentum of the blob, which always increases linearly with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the migration and behavior of young Pacific Bluefin tuna (Thunnus orientalis) using archival tags. The archival tag measures environmental variables, records them in its memory, and estimates daily geographical locations based on measured light levels. Of 166 archival tags implanted in Pacific bluefin tuna that were released at the northeastern end of the East China Sea from 1995 to 1997, 30 tags were recovered, including one from a fish that migrated across the Pacific. This article describes swimming depth, ambient water temperature, and feeding frequency of young Pacific bluefin tuna based on retrieved data. Tag performance, effect of the tag on the fish, and horizontal movements of the species are described in another paper. Young Pacific bluefin tuna swim mainly in the mixed layer, usually near the sea surface, and swim in deeper water in daytime than at nighttime. They also exhibit a pattern of depth changes, corresponding to sunrise and sunset, apparently to avoid a specific low light level. The archival tags recorded temperature changes in viscera that appear to be caused by feeding, and those changes indicate that young Pacific bluefin tuna commonly feed at dawn and in the daytime, but rarely at dusk or at night. Water temperature restricts their distribution, as indicated by changes in their vertical distribution with the seasonal change in depth of the thermocline and by the fact that their horizontal distribution is in most cases confined to water in the temperature range of 14−20°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates a catalyst-free synthesis of ZnO nanostructures using platinum microheaters under ambient environmental conditions. Different morphologies of ZnO nanostructures are synthesized from the oxidization of Zn thin film by local heating. The synthesized ZnO structures are characterized by the SEM, EDX and Raman spectra. The characterization of two shapes of Pt microheaters is investigated and the relationship between the applied heating power and ZnO nanostructures synthesis is investigated under ambient conditions. We observe that the density and morphology of ZnO nanostructures can be controlled through applied heating voltages. Furthermore, a connected composite structural (Zn-ZnO-Zn) layer is synthesized using combinative microheaters. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To expand the feasibility of applying simple, efficient, non-invasive DNA preparation methods using samples that can be obtained from giant pandas living in the wild, we investigated the use of scent markings and fecal samples. Giant panda-specific oligonucleotide primers were used to amplify a portion of the mitochondrial DNA control region as well as a portion of the mitochondrial DNA cytochrome b gene and tRNA(Thr) gene region. A 196 base pair (bp) fragment in the control region and a 449 bp fragment in the cytochrome b gene and tRNA(Thr) gene were successfully amplified. Sequencing of polymerase chain reaction (PCR) products demonstrated that the two fragments are giant panda sequences. Furthermore, under simulated field conditions we found that DNA can be extracted from fecal samples aged as long as 3 months. Our results suggest that the scent mark and fecal samples are simple, efficient, and easily prepared DNA sources. (C) 1998 Wiley-Liss, Inc.