908 resultados para Algoritmos transgenéticos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The telecommunications industry has experienced recent changes, due to increasing quest for access to digital services for data, video and multimedia, especially using the mobile phone networks. Recently in Brazil, mobile operators are upgrading their networks to third generations systems (3G) providing to users broadband services such as video conferencing, Internet, digital TV and more. These new networks that provides mobility and high data rates has allowed the development of new market concepts. Currently the market is focused on the expansion of WiMAX technology, which is gaining increasingly the market for mobile voice and data. In Brazil, the commercial interest for this technology appears to the first award of licenses in the 3.5 GHz band. In February 2003 ANATEL held the 003/2002/SPV-ANATEL bidding, where it offered blocks of frequencies in the range of 3.5 GHz. The enterprises who purchased blocks of frequency were: Embratel, Brazil Telecom (Vant), Grupo Sinos, Neovia and WKVE, each one with operations spread in some regions of Brazil. For this and other wireless communications systems are implemented effectively, many efforts have been invested in attempts to developing simulation methods for coverage prediction that is close to reality as much as possible so that they may become believers and indispensable tools to design wireless communications systems. In this work wasm developed a genetic algorithm (GA's) that is able to optimize the models for predicting propagation loss at applicable frequency range of 3.5 GHz, thus enabling an estimate of the signal closer to reality to avoid significant errors in planning and implementation a system of wireless communication

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antenna arrays are able to provide high and controlled directivity, which are suitable for radiobase stations, radar systems, and point-to-point or satellite links. The optimization of an array design is usually a hard task because of the non-linear characteristic of multiobjective, requiring the application of numerical techniques, such as genetic algorithms. Therefore, in order to optimize the electronic control of the antenna array radiation pattem through genetic algorithms in real codification, it was developed a numerical tool which is able to positioning the array major lobe, reducing the side lobe levels, canceling interference signals in specific directions of arrival, and improving the antenna radiation performance. This was accomplished by using antenna theory concepts and optimization methods, mainly genetic algorithms ones, allowing to develop a numerical tool with creative genes codification and crossover rules, which is one of the most important contribution of this work. The efficiency of the developed genetic algorithm tool is tested and validated in several antenna and propagation applications. 11 was observed that the numerical results attend the specific requirements, showing the developed tool ability and capacity to handle the considered problems, as well as a great perspective for application in future works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensors and actuators Networks specified by IEEE 802.15.4, are becoming increasingly being applied to instrumentation, as in instrumentation of oil wells with completion Plunger Lift type. Due to specific characteristics of the environment being installed, it s find the risk of compromising network security, and presenting several attack scenarios and the potential damage from them. It`s found the need for a more detailed security study of these networks, which calls for use of encryption algorithms, like AES-128 bits and RC6. So then it was implement the algorithms RC6 and AES-128, in an 8 bits microcontroller, and study its performance characteristics, critical for embedded applications. From these results it was developed a Hybrid Algorithm Cryptographic, ACH, which showed intermediate characteristics between the AES and RC6, more appropriate for use in applications with limitations of power consumption and memory. Also was present a comparative study of quality of security among the three algorithms, proving ACH cryptographic capability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hierarchical fuzzy control scheme is applied to improve vibration suppression by using an electro-mechanical system based on the lever principle. The hierarchical intelligent controller consists of a hierarchical fuzzy supervisor, one fuzzy controller and one robust controller. The supervisor combines controllers output signal to generate the control signal that will be applied on the plant. The objective is to improve the performance of the electromechanical system, considering that the supervisor could take advantage of the different techniques based controllers. The robust controller design is based on a linear mathematical model. Genetic algorithms are used on the fuzzy controller and the supervisor tuning, which are based on non-linear mathematical model. In order to attest the efficiency of the hierarchical fuzzy control scheme, digital simulations were employed. Some comparisons involving the optimized hierarchical controller and the non-optimized hierarchical controller will be made to prove the efficiency of the genetic algorithms and the advantages of its use

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pattern classification is one of the machine learning subareas that has the most outstanding. Among the various approaches to solve pattern classification problems, the Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the solution by solving a set of linear equations instead of quadratic programming implemented in SVM. The LS-SVMs provide some free parameters that have to be correctly chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high performance, lots of tools have been developed to improve them, mainly the development of new classifying methods and the employment of ensembles, in other words, a combination of several classifiers. In this work, our proposal is to use an ensemble and a Genetic Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM classification. In the construction of this ensemble, we use a random selection of attributes of the original problem, which it splits the original problem into smaller ones where each classifier will act. So, we apply a genetic algorithm to find effective values of the LS-SVM parameters and also to find a weight vector, measuring the importance of each machine in the final classification. Finally, the final classification is obtained by a linear combination of the decision values of the LS-SVMs with the weight vector. We used several classification problems, taken as benchmarks to evaluate the performance of the algorithm and compared the results with other classifiers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modelagem de processos industriais tem auxiliado na produção e minimização de custos, permitindo a previsão dos comportamentos futuros do sistema, supervisão de processos e projeto de controladores. Ao observar os benefícios proporcionados pela modelagem, objetiva-se primeiramente, nesta dissertação, apresentar uma metodologia de identificação de modelos não-lineares com estrutura NARX, a partir da implementação de algoritmos combinados de detecção de estrutura e estimação de parâmetros. Inicialmente, será ressaltada a importância da identificação de sistemas na otimização de processos industriais, especificamente a escolha do modelo para representar adequadamente as dinâmicas do sistema. Em seguida, será apresentada uma breve revisão das etapas que compõem a identificação de sistemas. Na sequência, serão apresentados os métodos fundamentais para detecção de estrutura (Modificado Gram- Schmidt) e estimação de parâmetros (Método dos Mínimos Quadrados e Método dos Mínimos Quadrados Estendido) de modelos. No trabalho será também realizada, através dos algoritmos implementados, a identificação de dois processos industriais distintos representados por uma planta de nível didática, que possibilita o controle de nível e vazão, e uma planta de processamento primário de petróleo simulada, que tem como objetivo representar um tratamento primário do petróleo que ocorre em plataformas petrolíferas. A dissertação é finalizada com uma avaliação dos desempenhos dos modelos obtidos, quando comparados com o sistema. A partir desta avaliação, será possível observar se os modelos identificados são capazes de representar as características estáticas e dinâmicas dos sistemas apresentados nesta dissertação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study and compare two percolation algorithms, one of then elaborated by Elias, and the other one by Newman and Ziff, using theorical tools of algorithms complexity and another algorithm that makes an experimental comparation. This work is divided in three chapters. The first one approaches some necessary definitions and theorems to a more formal mathematical study of percolation. The second presents technics that were used for the estimative calculation of the algorithms complexity, are they: worse case, better case e average case. We use the technique of the worse case to estimate the complexity of both algorithms and thus we can compare them. The last chapter shows several characteristics of each one of the algorithms and through the theoretical estimate of the complexity and the comparison between the execution time of the most important part of each one, we can compare these important algorithms that simulate the percolation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Federal do Rio Grande do Norte

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering data is a very important task in data mining, image processing and pattern recognition problems. One of the most popular clustering algorithms is the Fuzzy C-Means (FCM). This thesis proposes to implement a new way of calculating the cluster centers in the procedure of FCM algorithm which are called ckMeans, and in some variants of FCM, in particular, here we apply it for those variants that use other distances. The goal of this change is to reduce the number of iterations and processing time of these algorithms without affecting the quality of the partition, or even to improve the number of correct classifications in some cases. Also, we developed an algorithm based on ckMeans to manipulate interval data considering interval membership degrees. This algorithm allows the representation of data without converting interval data into punctual ones, as it happens to other extensions of FCM that deal with interval data. In order to validate the proposed methodologies it was made a comparison between a clustering for ckMeans, K-Means and FCM algorithms (since the algorithm proposed in this paper to calculate the centers is similar to the K-Means) considering three different distances. We used several known databases. In this case, the results of Interval ckMeans were compared with the results of other clustering algorithms when applied to an interval database with minimum and maximum temperature of the month for a given year, referring to 37 cities distributed across continents

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of clustering methods for the discovery of cancer subtypes has drawn a great deal of attention in the scientific community. While bioinformaticians have proposed new clustering methods that take advantage of characteristics of the gene expression data, the medical community has a preference for using classic clustering methods. There have been no studies thus far performing a large-scale evaluation of different clustering methods in this context. This work presents the first large-scale analysis of seven different clustering methods and four proximity measures for the analysis of 35 cancer gene expression data sets. Results reveal that the finite mixture of Gaussians, followed closely by k-means, exhibited the best performance in terms of recovering the true structure of the data sets. These methods also exhibited, on average, the smallest difference between the actual number of classes in the data sets and the best number of clusters as indicated by our validation criteria. Furthermore, hierarchical methods, which have been widely used by the medical community, exhibited a poorer recovery performance than that of the other methods evaluated. Moreover, as a stable basis for the assessment and comparison of different clustering methods for cancer gene expression data, this study provides a common group of data sets (benchmark data sets) to be shared among researchers and used for comparisons with new methods

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D binary image is considered well-composed if, and only if, the union of the faces shared by the foreground and background voxels of the image is a surface in R3. Wellcomposed images have some desirable topological properties, which allow us to simplify and optimize algorithms that are widely used in computer graphics, computer vision and image processing. These advantages have fostered the development of algorithms to repair bi-dimensional (2D) and three-dimensional (3D) images that are not well-composed. These algorithms are known as repairing algorithms. In this dissertation, we propose two repairing algorithms, one randomized and one deterministic. Both algorithms are capable of making topological repairs in 3D binary images, producing well-composed images similar to the original images. The key idea behind both algorithms is to iteratively change the assigned color of some points in the input image from 0 (background)to 1 (foreground) until the image becomes well-composed. The points whose colors are changed by the algorithms are chosen according to their values in the fuzzy connectivity map resulting from the image segmentation process. The use of the fuzzy connectivity map ensures that a subset of points chosen by the algorithm at any given iteration is the one with the least affinity with the background among all possible choices

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classifier ensembles are systems composed of a set of individual classifiers and a combination module, which is responsible for providing the final output of the system. In the design of these systems, diversity is considered as one of the main aspects to be taken into account since there is no gain in combining identical classification methods. The ideal situation is a set of individual classifiers with uncorrelated errors. In other words, the individual classifiers should be diverse among themselves. One way of increasing diversity is to provide different datasets (patterns and/or attributes) for the individual classifiers. The diversity is increased because the individual classifiers will perform the same task (classification of the same input patterns) but they will be built using different subsets of patterns and/or attributes. The majority of the papers using feature selection for ensembles address the homogenous structures of ensemble, i.e., ensembles composed only of the same type of classifiers. In this investigation, two approaches of genetic algorithms (single and multi-objective) will be used to guide the distribution of the features among the classifiers in the context of homogenous and heterogeneous ensembles. The experiments will be divided into two phases that use a filter approach of feature selection guided by genetic algorithm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The course of Algorithms and Programming reveals as real obstacle for many students during the computer courses. The students not familiar with new ways of thinking required by the courses as well as not having certain skills required for this, encounter difficulties that sometimes result in the repetition and dropout. Faced with this problem, that survey on the problems experienced by students was conducted as a way to understand the problem and to guide solutions in trying to solve or assuage the difficulties experienced by students. In this paper a methodology to be applied in a classroom based on the concepts of Meaningful Learning of David Ausubel was described. In addition to this theory, a tool developed at UFRN, named Takkou, was used with the intent to better motivate students in algorithms classes and to exercise logical reasoning. Finally a comparative evaluation of the suggested methodology and traditional methodology was carried out, and results were discussed