119 resultados para Acritarchs, Prasinophyte Phycomata
Resumo:
The climatic deterioration related to the onset of Northern Hemisphere glaciations (circa 2.52 Ma BP) must have lead to reorganization and relocation of species associations and may have enhanced species turnover. The present study investigates how this deterioration affects the dinoflagellate cyst and acritarch assemblages from two locations, DSDP Site 607 (North Atlantic) and the Singa section (southern Italy). The records from these locations cover the interval from 2.8 to 2.2 Ma with at least a 5 ka resolution and they have been correlated to the Milankovitch periodicities on a cycle to cycle basis by means of integrated high resolution stable isotope, calcium carbonate, foraminiferal, palynological and magnetostratigraphical datasets. In the present study this high resolution stratigraphic framework is used for a detailed correlation of events occurring in each of the depositional sequences. It also enables further assessment of the palaeoenvironmental preferences of some dinoflagellate cyst forms. Comparison of the two palynological records reveals a close correspondence in the timing of major assemblage changes and extinction events, confirming their Milankovitch cycle based correlation. A close link between periods of Northern Hemisphere cooling (at oxygen isotope stages 110, 104 and 100-96) and increased dinoflagellate cyst turnover appears to be present for both DSDP Site 607 and the Singa section. The turnover events can also be recognized in the records of planktic foraminifera and calcamous nannoplankton. Comparison of the Singa section with Site 607 and with other time equivalent marine palynological data sets, shows that some oceanic taxa respond similarly over a large area. The biostratigraphical implications are discussed. Notably the last occurrence of Invertocystu lucrymosa appears to be a valuable marker for isotope stage 110 in the Mediterranean and North Atlantic.
Resumo:
A diverse assemblage of marine palynomorphs was recovered from the Oligocene - Miocene section of CRP-2/2A. Most of the assemblage is composed of previously unrecognised species. Three distinct groups of marine palynomorph were recognised: (1) prasinophytes, mainly Cymatiosphaera, (2) acritarchs, mainly Leiosphaeridia and Sigmopollis although Leiofusa is an important component of the bottom half of the hole, and (3) dinoflagellate cysts. About 27 species of in situ dinoflagellate cysts were recorded, of which seven apparently undescribed species of Lejeunecysta form a prominent component. Reworked specimens of several species of the Paleogene Transantarctic Flora occur in CRP-2/2A sediments. Several abundance peaks of reworked taxa from the Transantarctic Flora are recorded. Three marine palynomorph zones were recognised (MP3, MP2, MP1), considered to be early Oligocene, late Oligocene, and late Oligocene/early Miocene in age respectively. Samples from the Quaternary and Pliocene part of CRP-2/2A were also examined. These proved either barren or yielded very sparse low diversity floras.
Resumo:
The Iberian Pyrite Belt (IPB), which forms part of the Variscan orogenic massif, is renowned for the magnitude and extent of its massive sulfide mineralization. The stratigraphic record of the IPB consists of Upper Palaeozoic sedimentary and igneous rocks. In ascending order, these comprise the thick Phyllite-Quartzite Group attributed to the Middle and Upper Devonian and characterized by shales and quartzites with conglomeratic and carbonate intercalations towards the top; the appreciably thinner Volcano-Sedimentary Complex, a heterogeneous uppermost Devonian-Mississippian unit embodying diverse volcanic, subvolcanic, and sedimentary rocks that host the massive sulfide deposits; and the shaly and sandy, turbiditic Culm Group (Carboniferous). This entire succession was folded and faulted during the Asturian phase of the Variscan Orogeny that gave rise to a thin-skinned type structure. The present study constitutes a detailed blostratigraphic investigation of palynologically productive samples representative of the Phyllite-Quartzite Group and the basal (anoxic) portion of the Volcano-Sedimentary Complex. These were collected from surface and mine exposures variously located in the Spanish part of the IPB; out of 282 samples processed, 117 proved to be productive palynologically. The aim of this project is to provide comprehensive palynostratigraphic data applicable to precise dating and correlation of the IPB's stratigraphic succession (i.e., of the two sampled lithostratigraphic units), which has hitherto been investigated biostratigraphically on a relatively localized basis. The results are incorporated in two successive parts. The first of these, i. e., the present paper, focuses on the systematic analysis of the terrestrial (miospore) component of the palynological assemblages. The second part, devoted to the marine, organic-walled microphytoplankton (acritarchs and prasinophytes), will evaluate the stratigraphic significance of the IPB palynofloras and their application to elucidating the geological history of the region. In the systematic-descriptive section, which occupies the bulk of this paper, 55 species of trilete miospores are described and are allocated among 34 genera, two of which (Cristicavatispora and Epigruspora) are newly instituted herein. The majority of the species are either positively identifiable or closely affiliable with previously named species. The nine newly established species are as follows: Camptozonotriletes confertus, Indotriradites diversispinosus, Cristicavatispora dispersa (type species), Epigruspora regularis (type species), Ancyrospora? implicata, Endosporites tuberosus, Rugospora explicata, Spelaeotriletes plicatus, and Teichertospora iberica.
Resumo:
High-resolution pollen and dinoflagellate cyst records from sediment core M72/5-25-GC1 were used to reconstruct vegetation dynamics in northern Anatolia and surface conditions of the Black Sea between 64 and 20 ka BP. During this period, the dominance of Artemisia in the pollen record indicates a steppe landscape and arid climate conditions. However, the concomitant presence of temperate arboreal pollen suggests the existence of glacial refugia in northern Anatolia. Long-term glacial vegetation dynamics reveal two major arid phases ~64-55 and 40-32 ka BP, and two major humid phases ~54-45 and 28-20 ka BP, correlating with higher and lower summer insolation, respectively. Dansgaard-Oeschger (D-O) cycles are clearly indicated by the 25-GC1 pollen record. Greenland interstadials are characterized by a marked increase in temperate tree pollen, indicating a spread of forests due to warm/wet conditions in northern Anatolia, whereas Greenland stadials reveal cold and arid conditions as indicated by spread of xerophytic biomes. There is evidence for a phase lag of ~500 to 1500 yr between initial warming and forest expansion, possibly due to successive changes in atmospheric circulation in the North Atlantic sector. The dominance of Pyxidinopsis psilata and Spiniferites cruciformis in the dinocyst record indicates brackish Black Sea conditions during the entire glacial period. The decrease of marine indicators (marine dinocysts, acritarchs) at ~54 ka BP and increase of freshwater algae (Pediastrum, Botryococcus) from 32 to 25 ka BP reveals freshening of the Black Sea surface water. This freshening is possibly related to humid phases in the region, to connection between Caspian Sea and Black Sea, to seasonal freshening by floating ice, and/or to closer position of river mouths due to low sea level. In the southern Black Sea, Greenland interstadials are clearly indicated by high dinocyst concentrations and calcium carbonate content, as a result of an increase in primary productivity. Heinrich events show a similar impact on the environment in the northern Anatolia/Black Sea region as Greenland stadials.