606 resultados para Absorbance
Resumo:
This work presents zinc determination in certain medicines that contain zinc oxide and zinc undecylenate. The technique consists of a spectrophotometric micro-scale titration, where EDTA is used as titrant, and xylenol orange as an indicator, in a medium adjusted to pH = 6 with acetic acid and sodium acetate. After each added portion of EDTA, the absorbance value is measured at a selected wavelength, in order to detect the end-point of the spectrophotometric titration. The results already obtained are satisfactory and promote student's interest. An additional contribution intends to propose the use of micro-scale techniques.
Resumo:
An easy experiment on the synthesis of 3,3-diphenyl-3H-naphtho[2,1-b]pyran and characterization of its photochromic behaviour is reported. Upon irradiation of an uncoloured toluene solution of 3,3-diphenyl-3H-naphtho[2,1-b]pyran with near UV light, an intense yellow colouration is produced due to the formation of two coloured open forms. When the irradiation source is removed the coloured open forms return to the uncoloured state. The analysis of the absorbance decay with time allows the determination of the discoloration rate constants of each open form. The reversibility of the photochromic phenomenon, well demonstrated by the exposure of the solution to sunlight for a few seconds, is particularly attractive to the students.
Resumo:
Building industry is a high volume branch which could provide prominent markets for wood based interior decoration solutions. Competition in interior decoration markets requires versatility in appearance. Versatility in wood appearance and added value could be achieved by printing grain patterns of different species or images directly onto wood. The problem when planning wood printing’s implementing into durable applications is basically how to transfer a high quality image or print sustainably onto wood, which is porous, heterogeneous, dimensionally unstable, non-white and rough. Wood preservation or treating, and modification can provide durability against degradation but also effect to the surface properties of wood which will effect on printability. Optimal adhesion is essential into print quality, as too high ink absorbance can cause spreading and too low ink absorbance cause pale prints. Different printing techniques have different requirements on materials and production. The direct printing on wood means, that intermedias are not used. Printing techniques with flexible printing plates or in fact non-impact techniques provide the best basis for wood printing. Inkjet printing of wood with different mechanical or chemical surface treatments, and wood plastic composite material gave good results that encourage further studies of the subject. Sanding the wood surface anti-parallel to the grain gave the best overall printing quality. Spreading parallel to the grain could not be avoided totally, except in cases where wood was treated hydrophobic so adhesion of the ink was not sufficient. Grain pattern of the underlying wood stays clearly visible in the printed images. Further studies should be made to fine tune the methods that already gave good results. Also effects of moisture content of wood, different inks, and long-term exposure to UV-radiation should be tested.
Resumo:
Two spectrophotometric methods are described for the simultaneous determination of ezetimibe (EZE) and simvastatin (SIM) in pharmaceutical preparations. The obtained data was evaluated by using two different chemometric techniques, Principal Component Regression (PCR) and Partial Least-Squares (PLS-1). In these techniques, the concentration data matrix was prepared by using the mixtures containing these drugs in methanol. The absorbance data matrix corresponding to the concentration data matrix was obtained by the measurements of absorbances in the range of 240 - 300 nm in the intervals with Δλ = 1 nm at 61 wavelengths in their zero order spectra, then, calibration or regression was obtained by using the absorbance data matrix and concentration data matrix for the prediction of the unknown concentrations of EZE and SIM in their mixture. The procedure did not require any separation step. The linear range was found to be 5 - 20 µg mL-1 for EZE and SIM in both methods. The accuracy and precision of the methods were assessed. These methods were successfully applied to a pharmaceutical preparation, tablet; and the results were compared with each other.
Resumo:
An evaluation of the performance of a continuous flow hydride generator-nebulizer for flame atomic absorption spectrometry was carried out. Optimization of nebulizer gas flow rate, sample acid concentration, sample and tetrahydroborate uptake rates and reductant concentration, on the As and Se absorbance signals was carried out. A hydrogen-argon flame was used. An improvement of the analytical sensitivity relative to the conventional bead nebulizer used in flame AA was obtained (2 (As) and 4.8 (Se) µg L-1). Detection limits (3σb) of 1 (As) and 1.3 (Se) µg L-1 were obtained. Accuracy of the method was checked by analyzing an oyster tissue reference material.
Resumo:
An apparatus which allows the direct measurement of the antioxidant capacity of volatiles compounds emitted from some herbs and culinary spices is described. The device comprises: a sample chamber, a mixing chamber, a pump and, a detection system. Volatiles from Clove (Syzygium aromaticum (L.) Merr. & L.M. Perry) were purged and captured into a DPPH-containing solution and changes in the absorbance were recorded on-line. Linear response was observed when temperature was set between 30-53 ºC; nitrogen flow was 15 mL min-1 during 60 min; DPPH concentration was 20 µmol L-1 and a sample size (powdered Clove) ranged between 200-1000 mg.
Resumo:
Signal processing methods based on the combined use of the continuous wavelet transform (CWT) and zero-crossing technique were applied to the simultaneous spectrophotometric determination of perindopril (PER) and indapamide (IND) in tablets. These signal processing methods do not require any priory separation step. Initially, various wavelet families were tested to identify the optimum signal processing giving the best recovery results. From this procedure, the Haar and Biorthogonal1.5 continuous wavelet transform (HAAR-CWT and BIOR1.5-CWT, respectively) were found suitable for the analysis of the related compounds. After transformation of the absorbance vectors by using HAAR-CWT and BIOR1.5-CWT, the CWT-coefficients were drawn as a graph versus wavelength and then the HAAR-CWT and BIOR1.5-CWT spectra were obtained. Calibration graphs for PER and IND were obtained by measuring the CWT amplitudes at 231.1 and 291.0 nm in the HAAR-CWT spectra and at 228.5 and 246.8 nm in BIOR1.5-CWT spectra, respectively. In order to compare the performance of HAAR-CWT and BIOR1.5-CWT approaches, derivative spectrophotometric (DS) method and HPLC as comparison methods, were applied to the PER-IND samples. In this DS method, first derivative absorbance values at 221.6 for PER and 282.7 nm for IND were used to obtain the calibration graphs. The validation of the CWT and DS signal processing methods was carried out by using the recovery study and standard addition technique. In the following step, these methods were successfully applied to the commercial tablets containing PER and IND compounds and good accuracy and precision were reported for the experimental results obtained by all proposed signal processing methods.
Resumo:
This paper describes a homemade autosampler for flow injection analysis (FIA), constructed with two step motors from old floppy disk drives (5¼-inch). The autosampler was connected to a computer through the parallel port and the sampling process was controlled by software in Quick Basic. The performance of the system was assessed by the determination of ammonium, based on the gaseous diffusion into a bromocresol purple solution, following the spectrophotometric determination of change in absorbance. The easy and simple construction is the main characteristics of this equipment and analytical results with RSD lower than 1% were obtained.
Resumo:
A flow injection method for the quantitative analysis of ketoconazole in tablets, based on the reaction with iron (III) ions, is presented. Ketoconazole forms a red complex with iron ions in an acid medium, with maximum absorbance at 495 nm. The detection limit was estimated to be 1×10--4 mol L-1; the quantitation limit is about 3×10--4 mol L-1 and approximately 30 determinations can be performed in an hour. The results were compared with those obtained with a reference HPLC method. Statistical comparisons were done using the Student's t procedure and the F test. Complete agreement was found at the 0.95 significance level between the proposed flow injection and the HPLC procedures. The two methods present similar precision, i.e., for HPLC the mean relative standard deviation was ca. 1.2% and for FIA ca. 1.6%.
Resumo:
A highly sensitive spectrophotometric method for the analysis of catecholamine drugs; L-dopa and methyldopa, is described. The analysis is based on the reaction of drug molecules with vanadium (V) which is reduced to vanadium (IV) and form complex with eriochrome cyanine R to give products having maximum absorbance (lmax) at 565 nm. Beer's law is obeyed in the range 0.028-0.84 and 0.099-0.996 mg mL-1 for L-dopa and methyldopa, respectively. The statistical analysis as well as comparison with reported methods demonstrated high precision and accuracy of the proposed method. The method was successfully applied in the analysis of pharmaceutical preparations.
Resumo:
A sensitive preconcentration procedure for spectrophotometeric determination of aluminum was developed. Aluminum as aluminon complex is adsorbed on microcrystalline naphthalene. The naphthalene containing the complex is dissolved in 3 mL of acetone and its absorbance is measured at 544 nm. The effect of various factors on the preconcentration of aluminum was investigated. The calibration graph was linear in the range of 1-60 mg L-1. The limit of detection was 0.52 mg L-1 and relative standard deviation for the determination of 5 mg L-1 was 2.65%. The proposed solid phase extraction procedure was applied to determination of aluminum in food samples.
Resumo:
A new simple and sensitive flotation-spectrophotometric method for the determination of cetylpyridinium chloride (CPC) is reported. The method is based on the formation of an ion- associate between CPC and Orange II (OR) which is floated in the interface of aqueous phase and n-hexane by vigorous shaking. The aqueous solution was discarded and the adsorbed ion associate on to the wall of a separating funnel was dissolved in a small volume of methanol solvent and its absorbance was measured at 480 nm. The apparent molar absorptivity (Ε) of the ion associate was determined to be 4.12 x 10(5) L mol-1 cm-1. The calibration graph was linear in the concentration range of 15-800 ng mL-1 of CPC with a correlation coefficient of 0.9988. The limit of detection (LOD) was 10.8 ng mL-1. The relative standard deviation (RSD) for determination of 100 and 800 ng mL-1 of CPC was 3.47 and 2.04% (n=7), respectively. The method was successfully applied to the determination of CPC in a commercial mouth washer product.
Resumo:
A UV-spectrophotometric method is described for the determination of lansoprazole (LAN). The method is based on the measurement of the absorbance of LAN solution in acetonitrile at 281 nm. The system obeyed Beer's law over the concentration range of 1.25-25.0 µg/mL. The degradation behavior of LAN was investigated under dry heat treatment, UV-degradation, acid hydrolysis, alkali hydrolysis and oxidation; and found to degrade extensively under acid hydrolysis, alkali hydrolysis and oxidation. The method was applied to the determination of LAN in capsule and the results were statistically compared with those of the reference method by applying Student's t-test and F-test.
Resumo:
Hydrogels have been prepared by free-radical solution copolymerization of acrylamide and sodium acrylate (NaAc), with molar ratio ranging from 25/75 to 80/20, respectively, using methylene bisacrylamide as the crosslinking agent. A FTIR spectroscopy procedure to determine the acrylate/acrylamide ratio in these hydrogels was proposed based on absorbance at 1410 cm-1 (nCOO-) and 2940 cm-1 (nCH and nCH2). A straight line with a good linear correlation coefficient (0.998) was obtained by plotting the acrylate content (Ac%) versus relative absorbance (Arel = A1410/A2940). Results were confirmed by the amount of sodium cation released in acid medium determined by atomic absorption spectrometry.
Resumo:
A sensitive spectrophotometric method was developed for sulphate determination in automotive ethanol fuel. The method based on the reaction of the analyte with barium-dibromosulphonazo(III) complex lead to a decrease in the magnitude of the absorbance signals monitored at 649 nm. No sample pretreatment is required and the proposed method allows sulphate determination in the 0.45 - 6.50 mg L-1 range with R.S.D. < 2% and limit of detection of 0.14 mg L-1. The method has been successfully applied for sulphate determination in automotive ethanol fuel and the results agreed with the reference chromatographic method.