1000 resultados para ATOMIC RADII


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, it has been observed that a liquid film spreading on a sample surface will significantly distort atomic force microscopy (AFM) measurements. In order to elaborate on the effect, we establish an equation governing the deformation of liquid film under its interaction with the AFM tip and substrate. A key issue is the critical liquid bump height y(0c) at which the liquid film jumps to contact the AFM tip. It is found that there are three distinct regimes in the variation of y(0c) with film thickness H, depending on Hamaker constants of tip, sample and liquid. Noticeably, there is a characteristic thickness H* physically defining what a thin film is; namely, once the film thickness H is the same order as H* , the effect of film thickness should be taken into account. The value of H* is dependent on Hamaker constants and liquid surface tension as well as tip radius.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of atomic densities on the propagation property for ultrashort pulses in a two-level atom (TLA) medium is investigated. With higher atomic densities, the self-induced transparency (SIT) cannot be recovered even for 2π ultrashort pulses. New features such as pulse splitting, red-shift and blue-shift of the corresponding spectra arise, and the component of central frequency gradually disappears.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hartree-Fock (HF) calculations have had remarkable success in describing large nuclei at high spin, temperature and deformation. To allow full range of possible deformations, the Skyrme HF equations can be discretized on a three-dimensional mesh. However, such calculations are currently limited by the computational resources provided by traditional supercomputers. To take advantage of recent developments in massively parallel computing technology, we have implemented the LLNL Skyrme-force static and rotational HF codes on Intel's DELTA and GAMMA systems at Caltech.

We decomposed the HF code by assigning a portion of the mesh to each node, with nearest neighbor meshes assigned to nodes connected by communication· channels. This kind of decomposition is well-suited for the DELTA and the GAMMA architecture because the only non-local operations are wave function orthogonalization and the boundary conditions of the Poisson equation for the Coulomb field.

Our first application of the HF code on parallel computers has been the study of identical superdeformed (SD) rotational bands in the Hg region. In the last ten years, many SD rotational bands have been found experimentally. One very surprising feature found in these SD rotational bands is that many pairs of bands in nuclei that differ by one or two mass units have nearly identical deexcitation gamma-ray energies. Our calculations of the five rotational bands in ^(192)Hg and ^(194)Pb show that the filling of specific orbitals can lead to bands with deexcitation gamma-ray energies differing by at most 2 keV in nuclei differing by two mass units and over a range of angular momenta comparable to that observed experimentally. Our calculations of SD rotational bands in the Dy region also show that twinning can be achieved by filling or emptying some specific orbitals.

The interpretation of future precise experiments on atomic parity nonconservation (PNC) in terms of parameters of the Standard Model could be hampered by uncertainties in the atomic and nuclear structure. As a further application of the massively parallel HF calculations, we calculated the proton and neutron densities of the Cesium isotopes from A = 125 to A = 139. Based on our good agreement with experimental charge radii, binding energies, and ground state spins, we conclude that the uncertainties in the ratios of weak charges are less than 10^(-3), comfortably smaller than the anticipated experimental error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several schemes for coherent quantum control of atomic and molecular processes have been proposed and investigated by using the techniques of adiabatic passage and ultrashort pulses, respectively. Some interesting results have been found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the results of numerical simulations of X-ray fluorescence holograms and the reconstructed atomic images for Fe single crystal are given. The influences of the recording angles ranges and the polarization effect on the reconstruction of the atomic images are discussed. The process for removing twin images by multiple energy fluorescence holography and expanding the energy range of the incident X-rays to improve the resolution of the reconstructed images is presented. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a scheme for realizing negative refractive index in a four-level atomic system. It is shown that such a system can simultaneously exhibit negative permittivity and negative permeability in an optical frequency range. Furthermore, by analysing the dispersion property of the left-handed material, we find that the probe beam can be controlled from superluminal to subluminal or vice versa via choosing appropriate parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric and magnetic responses of the medium to the probe field are analysed in a four-level loop atomic system by taking into account the relative phase of the applied fields. An interesting phenomenon is found: under suitable conditions, a change of the refractive index from positive to negative can occur by modulating the relative phase of the applied fields. Then the medium can be switched from a positive index material to a negative index material in our scheme. In addition, a negative index material can be realized in different frequency regions by adjusting the relative phase. It may give us a convenient way to obtain the desired material with positive or negative index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sideband manipulation of population inversion in a three-level A atomic configuration is investigated theoretically. Compared with the case of a nearly monochromatic field, a population inversion between an excited state and a ground state has been found in a wide sideband intensity range by increasing the difference in frequency between three components. Furthermore, the population inversion can be controlled by the sum of the relative phases of the sideband components of the trichromatic pump field with respective to the phase of the central component. Changing the sum phase from 0 to pi, the population inversion between the excited state and the ground state can increase within nearly half of the sideband intensity range. At the same time, the sideband intensity range that corresponds to the system exhibiting inversion rho(00) > rho 11 also becomes wider evidently.