894 resultados para ARPANET (Computer network)
Resumo:
"W.O. 01-0247"--Colophon.
Resumo:
"This publication has been made available through a partnership of the Illinois Department of Commerce and Economic Opportunity's Illinois Entrepreneurship Network Business Information Center, the Small Business Development Center Network and the U.S. Small Business Administration."--p. [4] of cover.
Resumo:
Vols. for 1893-19<23> includes section: "Reviews."
Resumo:
Editors: 1886-Apr. 1891, M. Creighton (American editor, 1887-97, J. Winsor); July 1891-Jan. 1901, S. R. Gardiner, R. L. Poole; Apr. 1901- R. L. Poole; Apr. 1938-
Resumo:
Bibliography of American linguistics, 1926-1928 in v. 6, p. 69-75.
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.
Resumo:
In this paper the network problem of determining all-pairs shortest-path is examined. A distributed algorithm which runs in O(n) time on a network of n nodes is presented. The number of messages of the algorithm is O(e+n log n) where e is the number of communication links of the network. We prove that this algorithm is time optimal.
Resumo:
An important issue of resource distribution is the fairness of the distribution. For example, computer network management wishes to distribute network resource fairly to its users. To describe the fairness of the resource distribution, a quantitative fairness score function was proposed in 1984 by Jain et al. The purpose of this paper is to propose a modified network sharing fairness function so that the users can be treated differently according to their priority levels. The mathematical properties are discussed. The proposed fairness score function keeps all the nice properties of and provides better performance when the network users have different priority levels.
Resumo:
Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.
Resumo:
Various physical systems have dynamics that can be modeled by percolation processes. Percolation is used to study issues ranging from fluid diffusion through disordered media to fragmentation of a computer network caused by hacker attacks. A common feature of all of these systems is the presence of two non-coexistent regimes associated to certain properties of the system. For example: the disordered media can allow or not allow the flow of the fluid depending on its porosity. The change from one regime to another characterizes the percolation phase transition. The standard way of analyzing this transition uses the order parameter, a variable related to some characteristic of the system that exhibits zero value in one of the regimes and a nonzero value in the other. The proposal introduced in this thesis is that this phase transition can be investigated without the explicit use of the order parameter, but rather through the Shannon entropy. This entropy is a measure of the uncertainty degree in the information content of a probability distribution. The proposal is evaluated in the context of cluster formation in random graphs, and we apply the method to both classical percolation (Erd¨os- R´enyi) and explosive percolation. It is based in the computation of the entropy contained in the cluster size probability distribution and the results show that the transition critical point relates to the derivatives of the entropy. Furthermore, the difference between the smooth and abrupt aspects of the classical and explosive percolation transitions, respectively, is reinforced by the observation that the entropy has a maximum value in the classical transition critical point, while that correspondence does not occurs during the explosive percolation.
Resumo:
This keynote presentation will report some of our research work and experience on the development and applications of relevant methods, models, systems and simulation techniques in support of different types and various levels of decision making for business, management and engineering. In particular, the following topics will be covered. Modelling, multi-agent-based simulation and analysis of the allocation management of carbon dioxide emission permits in China (Nanfeng Liu & Shuliang Li Agent-based simulation of the dynamic evolution of enterprise carbon assets (Yin Zeng & Shuliang Li) A framework & system for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps: a big data perspective (Jin Xu, Zheng Li, Shuliang Li & Yanyan Zhang) Open innovation: intelligent model, social media & complex adaptive system simulation (Shuliang Li & Jim Zheng Li) A framework, model and software prototype for modelling and simulation for deshopping behaviour and how companies respond (Shawkat Rahman & Shuliang Li) Integrating multiple agents, simulation, knowledge bases and fuzzy logic for international marketing decision making (Shuliang Li & Jim Zheng Li) A Web-based hybrid intelligent system for combined conventional, digital, mobile, social media and mobile marketing strategy formulation (Shuliang Li & Jim Zheng Li) A hybrid intelligent model for Web & social media dynamics, and evolutionary and adaptive branding (Shuliang Li) A hybrid paradigm for modelling, simulation and analysis of brand virality in social media (Shuliang Li & Jim Zheng Li) Network configuration management: attack paradigms and architectures for computer network survivability (Tero Karvinen & Shuliang Li)
Resumo:
Nuestra idea se desarrolla en Internet, donde personas están buscando bienes y servicios para suplir sus necesidades y problemas -- Lo que buscamos es identificar que problemas existen para nichos de mercado específicos a los cuales se les pueda servir por medio de páginas web -- Para cada nicho de mercado pueden existir problemas que no han sido servidos o que están descuidados por otras páginas web dentro de cada nicho que queramos servir -- De acuerdo a nuestra investigación de distintos nichos, buscaremos oportunidades en mercados donde no hayan sido entregadas soluciones por medio de Internet (no hay contenido al respecto o es pobre o encontramos un micro nicho sin atender) -- Nuestra estrategia de éxito es la siguiente: 1 -- Buscar nichos de mercado en Internet cuyas necesidades no hayan sido suplidas por medio de páginas web y donde el contenido que exista no sea muy bueno o se pueden hacer mejoras -- 2 -- Crear una página web con el contenido clave para suplir estas necesidades -- 3 -- Encontrar productos o servicios relacionados y dar una recomendación de compra (por medio de una comparación entre productos, análisis de sus beneficios, testimonios)
Resumo:
Stand-alone and networked surgical virtual reality based simulators have been proposed as means to train surgical skills with or without a supervisor nearby the student or trainee -- However, surgical skills teaching in medicine schools and hospitals is changing, requiring the development of new tools to focus on: (i) importance of mentors role, (ii) teamwork skills and (iii) remote training support -- For these reasons, a surgical simulator should not only allow the training involving a student and an instructor that are located remotely, but also the collaborative training of users adopting different medical roles during the training sesión -- Collaborative Networked Virtual Surgical Simulators (CNVSS) allow collaborative training of surgical procedures where remotely located users with different surgical roles can take part in the training session -- To provide successful training involving good collaborative performance, CNVSS should handle heterogeneity factors such as users’ machine capabilities and network conditions, among others -- Several systems for collaborative training of surgical procedures have been developed as research projects -- To the best of our knowledge none has focused on handling heterogeneity in CNVSS -- Handling heterogeneity in this type of collaborative sessions is important because not all remotely located users have homogeneous internet connections, nor the same interaction devices and displays, nor the same computational resources, among other factors -- Additionally, if heterogeneity is not handled properly, it will have an adverse impact on the performance of each user during the collaborative sesión -- In this document, the development of a context-aware architecture for collaborative networked virtual surgical simulators, in order to handle the heterogeneity involved in the collaboration session, is proposed -- To achieve this, the following main contributions are accomplished in this thesis: (i) Which and how infrastructure heterogeneity factors affect the collaboration of two users performing a virtual surgical procedure were determined and analyzed through a set of experiments involving users collaborating, (ii) a context-aware software architecture for a CNVSS was proposed and implemented -- The architecture handles heterogeneity factors affecting collaboration, applying various adaptation mechanisms and finally, (iii) A mechanism for handling heterogeneity factors involved in a CNVSS is described, implemented and validated in a set of testing scenarios
Resumo:
SQL Injection Attack (SQLIA) remains a technique used by a computer network intruder to pilfer an organisation’s confidential data. This is done by an intruder re-crafting web form’s input and query strings used in web requests with malicious intent to compromise the security of an organisation’s confidential data stored at the back-end database. The database is the most valuable data source, and thus, intruders are unrelenting in constantly evolving new techniques to bypass the signature’s solutions currently provided in Web Application Firewalls (WAF) to mitigate SQLIA. There is therefore a need for an automated scalable methodology in the pre-processing of SQLIA features fit for a supervised learning model. However, obtaining a ready-made scalable dataset that is feature engineered with numerical attributes dataset items to train Artificial Neural Network (ANN) and Machine Leaning (ML) models is a known issue in applying artificial intelligence to effectively address ever evolving novel SQLIA signatures. This proposed approach applies numerical attributes encoding ontology to encode features (both legitimate web requests and SQLIA) to numerical data items as to extract scalable dataset for input to a supervised learning model in moving towards a ML SQLIA detection and prevention model. In numerical attributes encoding of features, the proposed model explores a hybrid of static and dynamic pattern matching by implementing a Non-Deterministic Finite Automaton (NFA). This combined with proxy and SQL parser Application Programming Interface (API) to intercept and parse web requests in transition to the back-end database. In developing a solution to address SQLIA, this model allows processed web requests at the proxy deemed to contain injected query string to be excluded from reaching the target back-end database. This paper is intended for evaluating the performance metrics of a dataset obtained by numerical encoding of features ontology in Microsoft Azure Machine Learning (MAML) studio using Two-Class Support Vector Machines (TCSVM) binary classifier. This methodology then forms the subject of the empirical evaluation.