149 resultados para ANGIOSPERMS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant cysteine-proteases (CysProt) represent a well-characterized type of proteolytic enzymes that fulfill tightly regulated physiological functions (senescence and seed germination among others) and defense roles. This article is focused on the group of papain-proteases C1A (family C1, clan CA) and their inhibitors, phytocystatins (PhyCys). In particular, the protease–inhibitor interaction and their mutual participation in specific pathways throughout the plant's life are reviewed. C1A CysProt and PhyCys have been molecularly characterized, and comparative sequence analyses have identified consensus functional motifs. A correlation can be established between the number of identified CysProt and PhyCys in angiosperms. Thus, evolutionary forces may have determined a control role of cystatins on both endogenous and pest-exogenous proteases in these species. Tagging the proteases and inhibitors with fluorescence proteins revealed common patterns of subcellular localization in the endoplasmic reticulum–Golgi network in transiently transformed onion epidermal cells. Further in vivo interactions were demonstrated by bimolecular fluorescent complementation, suggesting their participation in the same physiological processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NADPH:protochlorophyllide oxidoreductase (POR; EC1.1.33.1) is a key enzyme for the light-induced greening of angiosperms. In barley, two POR proteins exist, termed PORA and PORB. These have previously been proposed to form higher molecular weight light-harvesting complexes in the prolamellar body of etioplasts (Reinbothe, C., Lebedev, N., and Reinbothe, S. (1999)Nature 397, 80–84). Here we report the in vitro reconstitution of such complexes from chemically synthesized protochlorophyllides (Pchlides) a andb and galacto- and sulfolipids. Low temperature (77 K) fluorescence measurements revealed that the reconstituted, lipid-containing complex displayed the same characteristics of photoactive Pchlide 650/657 as the presumed native complex in the prolamellar body. Moreover, Pchlide F650/657 was converted to chlorophyllide (Chlide) 684/690 upon illumination of the reconstituted complex with a 1-ms flash of white light. Identification and quantification of acetone-extractable pigments revealed that only the PORB-bound Pchlide a had been photoactive and was converted to Chlide a, whereas Pchlide b bound to the PORA remained photoinactive. Nondenaturing PAGE of the reconstituted Pchlide a/b-containing complex further demonstrated a size similar to that of the presumed native complexin vivo, suggesting that both complexes may be identical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NADPH: protochlorophyllide oxido reductase (POR) A is a key enzyme of chlorophyll biosynthesis in angiosperms. It is nucleus-encoded, synthesized as a larger precursor in the cytosol and imported into the plastids in a substrate-dependent manner. Plastid envelope membrane proteins, called protochlorophyllide dependent translocon proteins, Ptcs, have been identified that interact with pPORA during import. Amongthem are a 16-kDa ortholog of the previously characterized outer envelope protein Oep16 (named Ptc16) and a33-kDa protein (Ptc33) related to the GTP-binding proteins Toc33 and Toc34 of Arabidopsis. In the present work, we studied the interactions and roles of Ptc16 and Ptc33 during pPORA import. Radio labeled Ptc16/Oep16 was synthesized from a corresponding cDNA and imported into isolated Arabidopsis plastids. Crosslinking experiments revealed that import of35S-Oep16/Ptc16 is stimulated by GTP.35S-Oep16/Ptc16forms larger complexes with Toc33 but not Toc34. Plastids of the ppi1 mutant of Arabidopsis lacking Toc33, were unable to import pPORA in darkness but imported the small subunit precursor of ribulose-1,5-bisphosphate carboxylase/oxygenase (pSSU), precursor ferredoxin (pFd) as well as pPORB which is a close relative of pPORA. In white light, partial suppressions of pSSU, pFd and pPORB import were observed. Our results unveil a hitherto unrecognized role of Toc33 in pPORA import and suggest photo oxidative membrane damage, induced by excess Pchlide accumulating in ppi1 chloroplasts because of the lack of pPORA import, to be the cause of the general drop of protein import.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta Tesis se cuantifica la variación cromática que producen los barnices en el color de los diferentes tipos de maderas de construcción, obteniendo un modelo matemático de predicción de color de la madera. Se analizan las prestaciones de dieciséis barnices, supuestamente incoloros, aplicados sobre veinte tipos de maderas, angiospermas y gimnospermas, de distintas densidades y latitudes. Ambos materiales son de uso frecuente en el ámbito de la construcción y de fácil localización en las tiendas y almacenes de ambos sectores. Se utilizan técnicas de descomposición cromática, mediante el empleo de microscopio óptico de reflexión, para poder obtener un abanico gráfico de histogramas con valores numéricos de luminosidad y composición cromática, y de esta forma comprobar que los supuestos barnices que se venden como incoloros, no son totalmente incoloros sino que muestran tendencias a virar hacia alguno de los colores básicos. En el proceso experimental de la Tesis, se aplican 16 barnices sobre 20 tipos de maderas, obteniéndose los histogramas de las campañas de fotografías realizadas con cinco años de diferencia, obteniéndose no solo la variación de color que producen los barnices sobre el original de la madera, sino además la influencia de un envejecimiento a los cinco años. La Tesis relaciona el tipo de barniz idóneo para cada tipo de madera, de modo que produzca la menor variación cromática. La Tesis además obtiene un modelo matemático que permite predecir el color final de la madera tratada en función del color inicial de la madera sin barnizar. Se propone en esta Tesis una recomendación de los productos a utilizar en cada uno de los tipos de madera en base a su color inicial. This Thesis quantifies the chromatic variation caused by varnishes in the colour of different types of timbers, obtaining a mathematical model for predicting the timber’s colour. The performance of sixteen varnishes, supposedly colourless, is analysed, applied on twenty types of timber, angiosperms and gymnosperms, of different densities and latitudes. Both materials are of frequent use in the construction field and easily located in the stores and warehouses of both sectors. Chromatic decomposition techniques are used, through the utilization of a reflection optical microscope, in order to obtain a graphic range of histograms with numerical values of luminosity and chromatic composition, and this way confirm that the alleged varnishes sold as colourless are not completely colourless but are prone to shift towards one of the basic colours. During the Thesis’ experimental procedure 16 varnishes are applied on 20 types of timber, obtaining the colour histograms of the photography campaigns carried out with a five years difference, resulting in not only the colour variation caused by the varnishes on the original timber, but also the influence of its ageing five years later. The Thesis links the right type of varnish for each kind of timber, so that as little chromatic variation as possible occurs. The Thesis obtains as well a mathematical model, which makes it possible to predict the final colour of the treated timber depending on the original colour of the timber with no varnish. This Thesis proposes a recommendation of the products to use on each type of timber on the basis of its original colour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fossil plant-bearing beds of the Tortonian (late Miocene) intramontane basin of La Cerdanya (Eastern Pyrenees, Catalonia, Spain) have been investigated for more than a century, and 165 species from 12 outcrops have been described in previous publications. The sediments with rich plant fossil assemblages, which correspond to lacustrine diatomitic deposits, contain large numbers of plant remains, mainly leaf compressions and impressions. These assemblages are well preserved, a consequence of the rapid accumulation of plant remains in the sediments of the basin's ancient lake, and the often close proximity of its shores to wetland and upland vegetation. This paper provides a comprehensive taxonomic and nomenclatural review of the historic and new collections of late Miocene macroflora for the La Cerdanya Basin. Examination of the newer materials allowed emendments to be made to the diagnoses ofAbies saportana, Acer pyrenakum,Alnus occidentalis, Quercus hispanka and Tilia vidali provided by REROLLE for the basin at the end of the 19th century. In addition, 24 species of vascular plants are identified for the basin for the first time, including one horsetail, three conifers, 19 arboreal or bushy dicotyledonous angiosperms, and one monocotyledonous angiosperm. Indeed, this is the first time that Cedrela helkonia (UNGER) KNOBLOCH, Decodon sp„ Hedera cf multinervis KOLAKOVSKII, Mahonia cf pseudosimplex KVACEK & WALTHER, Smilax cf. aspera L. vm.fossilis and Ulmus cf. plurinervia UNGER have been recorded anywhere in the Iberian Peninsula. The La Cerdanya Basin plant assemblages of the late Miocene mainly consisted of conifers and deciduous broadleaved taxa of Arctotertiary origin; evergreen Palaeotropical elements were less well represented. This flora is similar to those recorded at coeval sites in northern Greece, northern Italy and central and eastern France. Within the Iberian Peninsula, the late Miocene macroflora reported for the nearby Seu d'Urgell Basin is the most similar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed restriction fragment length polymorphism map was used to determine the chromosomal locations and subgenomic distributions of quantitative trait loci (QTLs) segregating in a cross between cultivars of allotetraploid (AADD) Gossypium hirsutum (“Upland” cotton) and Gossypium barbadense (“Sea Island,” “Pima,” or “Egyptian” cotton) that differ markedly in the quality and quantity of seed epidermal fibers. Most QTLs influencing fiber quality and yield are located on the “D” subgenome, derived from an ancestor that does not produce spinnable fibers. D subgenome QTLs may partly account for the fact that domestication and breeding of tetraploid cottons has resulted in fiber yield and quality levels superior to those achieved by parallel improvement of “A” genome diploid cottons. The merger of two genomes with different evolutionary histories in a common nucleus appears to offer unique avenues for phenotypic response to selection. This may partly compensate for reduction in quantitative variation associated with polyploid formation and be one basis for the prominence of polyploids among extant angiosperms. These findings impel molecular dissection of the roles of divergent subgenomes in quantitative inheritance in many other polyploids and further exploration of both “synthetic” polyploids and exotic diploid genotypes for agriculturally useful variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In filamentous fungi, het loci (for heterokaryon incompatibility) are believed to regulate self/nonself-recognition during vegetative growth. As filamentous fungi grow, hyphal fusion occurs within an individual colony to form a network. Hyphal fusion can occur also between different individuals to form a heterokaryon, in which genetically distinct nuclei occupy a common cytoplasm. However, heterokaryotic cells are viable only if the individuals involved have identical alleles at all het loci. One het locus, het-c, has been characterized at the molecular level in Neurospora crassa and encodes a glycine-rich protein. In an effort to understand the role of this locus in filamentous fungi, we chose to study its evolution by analyzing het-c sequence variability in species within Neurospora and related genera. We determined that the het-c locus was polymorphic in a field population of N. crassa with close to equal frequency of each of the three allelic types. Different species and even genera within the Sordariaceae shared het-c polymorphisms, indicating that these polymorphisms originated in an ancestral species. Finally, an analysis of the het-c specificity region shows a high occurrence of nonsynonymous substitution. The persistence of allelic lineages, the nearly equal allelic distribution within populations, and the high frequency of nonsynonymous substitutions in the het-c specificity region suggest that balancing selection has operated to maintain allelic diversity at het-c. Het-c shares this particular evolutionary characteristic of departing from neutrality with other self/nonself-recognition systems such as major histocompatibility complex loci in mammals and the S (self-incompatibility) locus in angiosperms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is the key enzyme of chlorophyll biosynthesis in angiosperms. In barley, two POR enzymes, termed PORA and PORB, exist. Both are nucleus-encoded plastid proteins that must be imported posttranslationally from the cytosol. Whereas the import of the precursor of PORA, pPORA, previously has been shown to depend on Pchlide, the import of pPORB occurred constitutively. To study this striking difference, chimeric precursor proteins were constructed in which the transit sequences of the pPORA and pPORB were exchanged and fused to either their cognate polypeptides or to a cytosolic dihydrofolate reductase (DHFR) reporter protein of mouse. As shown here, the transit peptide of the pPORA (transA) conferred the Pchlide requirement of import onto both the mature PORB and the DHFR. By contrast, the transit peptide of the pPORB directed the reporter protein into both chloroplasts that contained or lacked translocation-active Pchlide. In vitro binding studies further demonstrated that the transit peptide of the pPORA, but not of the pPORB, is able to bind Pchlide. We conclude that the import of the authentic pPORA and that of the transA-PORB and transA-DHFR fusion proteins is regulated by a direct transit peptide-Pchlide interaction, which is likely to occur in the plastid envelope, a major site of porphyrin biosynthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A densely sampled, diverse new fauna from the uppermost Cedar Mountain Formation, Utah, indicates that the basic pattern of faunal composition for the Late Cretaceous of North America was already established by the Albian-Cenomanian boundary. Multiple, concordant 40Ar/39Ar determinations from a volcanic ash associated with the fauna have an average age of 98.39 ± 0.07 million years. The fauna of the Cedar Mountain Formation records the first global appearance of hadrosaurid dinosaurs, advanced lizard (e.g., Helodermatidae), and mammal (e.g., Marsupialia) groups, and the first North American appearance of other taxa such as tyrannosaurids, pachycephalosaurs, and snakes. Although the origin of many groups is unclear, combined biostratigraphic and phylogenetic evidence suggests an Old World, specifically Asian, origin for some of the taxa, an hypothesis that is consistent with existing evidence from tectonics and marine invertebrates. Large-bodied herbivores are mainly represented by low-level browsers, ornithopod dinosaurs, whose radiations have been hypothesized to be related to the initial diversification of angiosperm plants. Diversity at the largest body sizes (>106 g) is low, in contrast to both preceding and succeeding faunas; sauropods, which underwent demise in the Northern hemisphere coincident with the radiation of angiosperms, apparently went temporarily unreplaced by other megaherbivores. Morphologic and taxonomic diversity among small, omnivorous mammals, multituberculates, is also low. A later apparent increase in diversity occurred during the Campanian, coincident with the appearance of major fruit types among angiosperms, suggesting the possibility of adaptive response to new resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alcohol dehydrogenase (Adh) gene family is much more complex in Pinus banksiana than in angiosperms, with at least seven expressed genes organized as two tightly linked clusters. Intron number and position are highly conserved between P. banksiana and angiosperms. Unlike angiosperm Adh genes, numerous duplications, as large as 217 bp, were observed within the noncoding regions of P. banksiana Adh genes and may be a common feature of conifer genes. A high frequency of duplication over a wide range of scales may contribute to the large genome size of conifers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The life cycle of angiosperms is punctuated by a dormant phase that separates embryonic and postembryonic development of the sporophyte. In the pickle (pkl) mutant of Arabidopsis, embryonic traits are expressed after germination. The penetrance of the pkl phenotype is strongly enhanced by inhibitors of gibberellin biosynthesis. Map-based cloning of the PKL locus revealed that it encodes a CHD3 protein. CHD3 proteins have been implicated as chromatin-remodeling factors involved in repression of transcription. PKL is necessary for repression of LEC1, a gene implicated as a critical activator of embryo development. We propose that PKL is a component of a gibberellin-modulated developmental switch that functions during germination to prevent reexpression of the embryonic developmental state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Group I introns are mobile, self-splicing genetic elements found principally in organellar genomes and nuclear rRNA genes. The only group I intron known from mitochondrial genomes of vascular plants is located in the cox1 gene of Peperomia, where it is thought to have been recently acquired by lateral transfer from a fungal donor. Southern-blot surveys of 335 diverse genera of land plants now show that this intron is in fact widespread among angiosperm cox1 genes, but with an exceptionally patchy phylogenetic distribution. Four lines of evidence—the intron’s highly disjunct distribution, many incongruencies between intron and organismal phylogenies, and two sources of evidence from exonic coconversion tracts—lead us to conclude that the 48 angiosperm genera found to contain this cox1 intron acquired it by 32 separate horizontal transfer events. Extrapolating to the over 13,500 genera of angiosperms, we estimate that this intron has invaded cox1 genes by cross-species horizontal transfer over 1,000 times during angiosperm evolution. This massive wave of lateral transfers is of entirely recent occurrence, perhaps triggered by some key shift in the intron’s invasiveness within angiosperms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two outstanding features of the flowering plant family Winteraceae are the occlusion of their stomatal pores by cutin plugs and the absence of water-conducting xylem vessels. An adaptive relationship between these two unusual features has been suggested whereby stomatal plugs restrict gas exchange to compensate for the presumed poor conductivity of their vesselless wood. This hypothesized connection fueled evolutionary arguments that the vesselless condition is ancestral in angiosperms. Here we show that in Drimys winteri, a tree common to wet forests, these stomatal occlusions pose only a small fixed resistance to water loss. In addition, they modify the humidity response of guard cells such that under high evaporative demand, leaves with plugs lose water at a faster rate than leaves from which the plugs have been experimentally removed. Instead of being adaptations for drought, we present evidence that these cuticular structures function to maintain photosynthetic activity under conditions of excess water on the leaf surface. Stomatal plugs decrease leaf wettability by preventing the formation of a continuous water film that would impede diffusion of CO2 into the leaf. Misting of leaves had no effect on photosynthetic rate of leaves with plugs, but resulted in a marked decrease (≈40%) in leaves from which the plugs had been removed. These findings do not support a functional association between stomatal plugs and hydraulic competence and provide a new perspective on debates surrounding the evolution of vessels in angiosperms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the origin and evolution of gene families is critical to our understanding of the evolution of protein function. To gain a detailed understanding of the evolution of the small heat shock proteins (sHSPs) in plants, we have examined the evolutionary history of the chloroplast (CP)-localized sHSPs. Previously, these nuclear-encoded CP proteins had been identified only from angiosperms. This study reveals the presence of the CP sHSPs in a moss, Funaria hygrometrica. Two clones for CP sHSPs were isolated from a F. hygrometrica heat shock cDNA library that represent two distinct CP sHSP genes. Our analysis of the CP sHSPs reveals unexpected evolutionary relationships and patterns of sequence conservation. Phylogenetic analysis of the CP sHSPs with other plant CP sHSPs and eukaryotic, archaeal, and bacterial sHSPs shows that the CP sHSPs are not closely related to the cyanobacterial sHSPs. Thus, they most likely evolved via gene duplication from a nuclear-encoded cytosolic sHSP and not via gene transfer from the CP endosymbiont. Previous sequence analysis had shown that all angiosperm CP sHSPs possess a methionine-rich region in the N-terminal domain. The primary sequence of this region is not highly conserved in the F. hygrometrica CP sHSPs. This lack of sequence conservation indicates that sometime in land plant evolution, after the divergence of mosses from the common ancestor of angiosperms but before the monocot–dicot divergence, there was a change in the selective constraints acting on the CP sHSPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many homeobox genes control essential developmental processes in animals and plants. In this report, we describe the first cDNA corresponding to a homeobox gene isolated from a gymnosperm, the HBK1 gene from the conifer Picea abies (L.) Karst (Norway spruce). The sequence shows distinct similarities specifically to the KNOX (knotted-like homeobox) class of homeobox genes known from different angiosperm plants. The deduced amino acid sequence of HBK1 is strikingly similar within the homeodomain (84% identical) to the maize gene Knotted1 (Kn1), which acts to regulate cell differentiation in the shoot meristem. This similarity suggested that the phylogenetic association of HBK1 with the KNOX genes might be coupled to a conservation of gene function. In support of this suggestion, we have found HBK1 to be expressed in the apical meristem in the central population of nondifferentiated stem cells, but not in organ primordia developing at the flanks of the meristem. This pattern of expression is similar to that of Kn1 in the maize meristem. We show further that HBK1, when expressed ectopically in transgenic Arabidopsis plants, causes aberrations in leaf development that are similar to the effects of ectopic expression of angiosperm KNOX genes on Arabidopsis development. Taken together, these data suggest that HBK1 has a role, similar to the KNOX genes in angiosperms, in the control of cellular differentiation in the apical meristem of spruce. The data also indicate that KNOX-gene regulation of vegetative development is an ancient feature of seed plants that was present in the last common ancestor of conifers and angiosperms.