981 resultados para ALPHA-TOSYLOXYLATION
Resumo:
The activation area and activation enthalpy are determined as a function of stress and temperature for alpha titanium. The results indicated that plastic flow below about 700°K occurs by a single thermally activated mechanism. Activation area determined by differential-stress creep tests falls in the range 80−8b2 and does not systematically depend on the impurity content. The total activation enthalpy derived from the temperature and strain-rate dependence of flow stress is 1.15 eV. The experimental data support a lattice hardening mechanism as controlling the low-temperature deformation in alpha titanium.
Resumo:
Actin stress fibers are dynamic structures in the cytoskeleton, which respond to mechanical stimuli and affect cell motility, adhesion and invasion of cancer cells. In nonmuscle cells, stress fibers have been subcategorized to three distinct stress fiber types: dorsal and ventral stress fibers and transverse arcs. These stress fibers are dissimilar in their subcellular localization, connection to substratum as well as in their dynamics and assembly mechanisms. Still uncharacterized is how they differ in their function and molecular composition. Here, I have studied involvement of nonmuscle alpha-actinin-1 and -4 in regulating distinct stress fibers as well as their localization and function in human U2OS osteosarcoma cells. Except for the correlation of upregulation of alpha-actinin-4 in invasive cancer types very little is known about whether these two actinins are redundant or have specific roles. The availability of highly specific alpha-actinin-1 antibody generated in the lab, revealed localization of alpha-actinin-1 along all three categories of stress fibers while alphaactinin-4 was detected at cell edge, distal ends of stress fibers as well as perinuclear regions. Strikingly, by utilizing RNAi-mediated gene silencing of alpha-actinin-1 resulted in specific loss of dorsal stress fibers and relocalization of alpha-actinin-4 to remaining transverse arcs and ventral stress fibers. Unexpectedly, aberrant migration was not detected in cells lacking alpha-actinin-1 even though focal adhesions were significantly smaller and fewer. Whereas, silencing of alpha-actinin-4 noticeably affected overall cell migration. In summary, as part of my master thesis study I have been able to demonstrate distinct localization and functional patterns for both alpha-actinin-1 and -4. I have identified alpha-actinin-1 to be a selective dorsal stress fiber crosslinking protein as well as to be required for focal adhesion maturation, while alpha-actinin-4 was demonstrated to be fundamental for cell migration.
Resumo:
The evolution of microstructure and texture during deformation of two-phase (alpha + beta) brass was studied for different initial microstructure and texture. The deformation processing involved unidirectional and multi-step cross-rolling. The bulk textures were determined by measuring the pole figures and calculating the orientation distribution function ODF for both alpha (fcc) and beta (bcc) phases, while the microstructure and other microstructural parameters were measured through optical microscopy and scanning electron microscopy with electron back scatter diffraction (SEM-EBSD). Results indicate that textures developed after unidirectional rolling and multi-step cross-rolling are significantly different. The variation in initial texture had a pronounced effect on the development of texture in the alpha phase during subsequent deformation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An alpha-D-glucuronidase was purified from the culture filtrates of Thermoascus aurantiacus. A simple colorimetric method for its assay is reported. The enzyme is a single polypeptide chain with a molecular weight of 118,000. It acts optimally at pH 4.5. It shows maximum activity at 65 degrees C. The t 1/2 at 70 degrees C was 40 min. It specifically cleaved the alpha-(1----2) linkage between 4-O-methyl-alpha-D-glucuronic acid and the xylose residue in xylan and several glucurono-xylooligosaccharides.
Resumo:
Liver mitochondria isolated from vanadate-administered rats showed increased (20-25%) rates of oxidation of both NAD(+)-linked substrates and succinate. Respiratory control index and ADP/O were unaffected by the treatment. Dormant and uncoupler-stimulated ATPase activity also was not affected by vanadate administration. Membrane-bound, electron-transport-linked dehydrogenase activities (both NAD(+)- and succinate-dependent) increased by 15-20% on vanadate treatment. Mitochondrial alpha-glycerophosphate dehydrogenase activity increased by 50% on vanadate administration. The above effects of vanadate on oxidoreductase activities could be prevented by the prior administration of antagonists to alpha-adrenergic receptors. Substrate-dependent H2O2 generation by mitochondria also showed an increase on vanadate administration.
Resumo:
The modes of binding of alpha- and beta-anomers of D-galactose, D-fucose and D-glucose to L-arabinose-binding protein (ABP) have been studied by energy minimization using the low resolution (2.4 A) X-ray data of the protein. These studies suggest that these sugars preferentially bind in the alpha-form to ABP, unlike L-arabinose where both alpha- and beta-anomers bind almost equally. The best modes of binding of alpha- and beta-anomers of D-galactose and D-fucose differ slightly in the nature of the possible hydrogen bonds with the protein. The residues Arg 151 and Asn 232 of ABP from bidentate hydrogen bonds with both L-arabinose and D-galactose, but not with D-fucose or D-glucose. However in the case of L-arabinose, Arg 151 forms hydrogen bonds with the hydroxyl group at the C-4 atom and the ring oxygen, whereas in case of D-galactose it forms bonds with the hydroxyl groups at the C-4 and C-6 atoms of the pyranose ring. The calculated conformational energies also predict that D-galactose is a better inhibitor than D-fucose and D-glucose, in agreement with kinetic studies. The weak inhibitor D-glucose binds preferentially to one domain of ABP leading to the formation of a weaker complex. Thus these studies provide information about the most probable binding modes of these sugars and also provide a theoretical explanation for the observed differences in their binding affinities.
Resumo:
A novel sonication-promoted Barbier reaction putatively generated the titled species from the corresponding naphthotriazinylmethyl chloride and magnesium in THF: its formal addition to a variety of carbonyl compounds in situ occurred in excellent yields. Subsequent catalytic hydrogenolysis of the triazine moiety demasked the amine, thus defining a route to various phenylethylamines (including the alkaloid 'mescaline'), or ethanolamines (in two cases), in excellent overall yields. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A simple and direct approach to both enantiomeric series of A-ring derivatives of 1 alpha,25-dihydroxyvitamin D-3 and the corresponding 1 alpha,3 alpha-derivatives, starting from the abundantly available R-carvone, is described. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Two tripeptides of the type Boc-Pro-ΔZX-Gly-NHEt (where X = Leu, Phe) have been synthesized and their solution conformations investigated by 270 MHz 1H n.m.r. and i.r. spectroscopy. These conformational studies indicated that ΔZLeu, similar to ΔZPhe, has a strong tendency to stabilize folded Type II β-turn conformations when present at i + 2 position.
Resumo:
The Occurrence of the Norrish type I a-cleavage process in some thio compounds has been examined by using the MIND013 method and employing the configuration interaction. Results reveal that where the radiationless process is not efficient, thio compounds can undergo photodissociation into radicals in their lowest triplet and singlet excited states. The activation barriers in all these cases arise from an avoided crossing between two states of different symmetries. The calculations of activation barriers by the CNDO-CI and MINDO-CI procedures reveal that the MINDO-CI method leads to realistic values of the activation energies.
Resumo:
The structures of two dehydropentapeptides, Boc-Pro-Delta Phe-Val-Delta Phe-Ala-OMe (I) and Boc-Pro-Delta Phe-Gly-Delta Phe-Ala-OMe (II) (Boc: t-butoxycarbonyl), have been determined by nuclear magnentic resonance (NMR), circular dichroism (CD), and X-ray, crystallographic studies. The peptide I assumes a S-shaped flat beta-bend structure, characterized by two partially overlapping type II beta-bends and absence of a second 1 <- 4 (N4-H center dot center dot center dot O1') intramolecular hydrogen bond. This is in contrast to the generally observed 3(10)-helical conformation in peptides with Delta Phe at alternate positions. This report describes the novel conformation assumed by peptide I and compares it with that of the conserved tip of the V3 loop of the HIV-1 envelope glycoprotein gp120 (sequence, G:P319 to F:P324, PDB code IACY). The tip of the V3 loop also assumes a S-shaped conformation with Arg:P322, making an intramolecular side-chain-backbone interaction with the carbonyl oxygen of Gly:P319. Interestingly, in peptide I, C(gamma)HVal(3) makes a similar side-chain-backbone C-H center dot center dot center dot O hydrogen bond with the carbonyl oxygen of the Boc group. The observed overall similarity indicates the possible use of the peptide as a viral antagonist or synthetic antigen. Peptide 11 adopts a unique turn followed by a 3(10)-helix. Both peptides I and II are classical examples of stabilization of unusual structures in oligopeptides.