931 resultados para AIR-FLOW LIMITATION
Resumo:
A model gas turbine burner was employed to investigate spray flames established under globally lean, continuous, swirling conditions. Two types of fuel were used to generate liquid spray flames: palm biodiesel and Jet-A1. The main swirling air flow was preheated to 350°C prior to mixing with airblast-atomized fuel droplets at atmospheric pressure. The global flame structure of flame and flow field were investigated at the fixed power output of 6 kW. Flame chemiluminescence imaging technique was employed to investigate the flame reaction zones, while particle imaging velocimetry (PIV) was utilized to measure the flow field within the combustor. The flow fields of both flames are almost identical despite some differences in the flame reaction zones. © (2013) Trans Tech Publications, Switzerland.
Resumo:
A key challenge in achieving good transient performance of highly boosted engines is the difficulty of accelerating the turbocharger from low air flow conditions (turbo lag). Multi-stage turbocharging, electric turbocharger assistance, electric compressors and hybrid powertrains are helpful in the mitigation of this deficit, but these technologies add significant cost and integration effort. Air-assist systems have the potential to be more cost-effective. Injecting compressed air into the intake manifold has received considerable attention, but the performance improvement offered by this concept is severely constrained by the compressor surge limit. The literature describes many schemes for generating the compressed gas, often involving significant mechanical complexity and/or cost. In this paper we demonstrate a novel exhaust assist system in which a reservoir is charged during braking. Experiments have been conducted using a 2.0 litre light-duty Diesel engine equipped with exhaust gas recirculation (EGR) and variable geometry turbine (VGT) coupled to an AC transient dynamometer, which was controlled to mimic engine load during in-gear braking and acceleration. The experimental results confirm that the proposed system reduces the time to torque during the 3rd gear tip-in by around 60%. Such a significant improvement was possible due to the increased acceleration of turbocharger immediately after the tip-in. Injecting the compressed gas into the exhaust manifold circumvents the problem of compressor surge and is the key enabler of the superior performance of the proposed concept. Copyright © 2013 SAE International.
Resumo:
The spray combustion characteristics of rapeseed methyl esters (RME) were compared to Jet-A1 fuel using a gas turbine type combustor. The swirling spray flames for both fuels were established at a constant power output of 6 kW. The main swirling air flow was preheated to 350 C prior to coaxially enveloping the airblast-atomized liquid fuel spray at atmospheric pressure. Investigation of the fundamental spray combustion was performed via measurements of the fuel droplet sizes and velocities, gas phase flow fields and flame reaction zones. The spray flame droplets and flow fields in the combustors were characterised using phase Doppler anemometry (PDA) and particle imaging velocimetry (PIV) respectively. Flame chemiluminescence imaging was employed to identify the flame reaction zones. The highest droplet concentration zone extends along a 30 angle from the symmetry axis, inside the flame zone. Only small droplets(<17 μ) (<17 μm)are found around the centreline region, while larger droplets are found at the edge of the spray outside the flame reaction zone. RME exhibits spray characteristics similar to Jet-A1 but with droplet concentration and volume fluxes four times higher, consistent with the expected longer droplet evaporation timescale. The flow field characteristics for both RME and Jet-A1 spray flames are very similar despite the significantly different visible characteristics of the flame reaction zones. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Understanding combustion instabilities requires accurate measurements of the acoustic velocity perturbation into injectors. This is often accomplished via the use of the two microphone technique, as this only requires two pressure transducers. However, measurements of the actual velocities emerging from the injectors are not often taken, leaving questions regarding the assumptions about the acoustic velocity. A comparison of velocity measured at downstream of the injector with that of two-microphone technique can show the accuracy and limitations of two-microphone technique. In this paper, velocity measurements are taken using both particle image velocimetry (PIV) and the two-microphone technique in a high pressure facility designed for aeroengine injector measurements. The flow is excited using an area modulation device installed on the choked end of the combustion chamber, with PIV measurements enabled by optical access downstream of the injector through a quartz tube and windows. Acoustic velocity perturbations at the injector are determined by considering the Fourier transformed pressure fluctuations for two microphones installed at a known distance upstream of the injector. PIV measurements are realized by seeding the air flow with micrometric water particles under 2.5 bar pressure at ambient temperature. Phase locked velocity fields are realized by synchronizing the acquisition of PIV images with the revolution of the acoustic modulator using the pressure signal measured at the face of injector. The mean velocity fluctuation is calculated as the difference between maximum and minimum velocities, normalized by the mean velocity of the unforced case. Those values are compared with the peak-to-peak velocity fluctuation amplitude calculated by the two-microphone technique. Although the ranges of velocity fluctuations for both techniques are similar, the variation of fluctuation with forcing frequencies diverges significantly with frequency. The differences can be attributed to several limitations associated with of both techniques, such as the quality of the signal, the signal/noise ratio, the accuracy of PIV measurements and the assumption of isentropic flow of the particle velocity from the plenum through the injector. We conclude that two-microphone methods can be used as a reference value for the velocity fluctuation in low order applications such as flame transfer functions, but not for drawing conclusions regarding the absolute velocity fluctuations in the injector. Copyright © 2013 by ASME.
Resumo:
The steady two-dimensional Navier-Stokes equations with the slip wall boundary conditions were used to simulate the supersonic flow in micro convergent-divergent nozzles. It is observed that shock waves can take place inside or outside of the micronozzles under the earth environment. For the over-expanded flows, there is a boundary layer separation point, downstream of which a wave interface separates the viscous boundary layer with back air flow and the inviscid core flow. The oblique shock wave is followed by the bow shock and shock diamond. The viscous boundary layer thickness relative to the whole nozzle width on the exit plane is increased but attains the maximum value around of 0.5 and oscillates against this value with the continuous increasing of the nozzle upstream pressures. The viscous effect either changes the normal shock waves outside of the nozzle for the inviscid flow to the oblique shock waves inside the nozzle, or transfers the expansion jet flow without shock waves for the inviscid flow to the oblique shock waves outside of the nozzle.
Resumo:
使用FLUENT软件, 对水冷火电厂的水冷塔换热进行了数值模拟, 解决了物模实验难以模拟热力因素的困难. 同时还对采用"空气涡流导引装置技术"的水冷塔和传统水冷塔, 在不同环境风影响下的换热效率进行了对比. 结果表明, 采用"空气涡流导引装置技术"的水冷塔换热效果优于传统水冷塔, 抵抗大风的能力更强
Resumo:
A new approach to the prediction of bend lifetime in pneumatic conveyors, subject to erosive wear is described. Mathematical modelling is exploited. Commercial Computational Fluid Dynamics (CFD) software is used for the prediction of air flow and particle tracks, and custom code for the modelling of bend erosion and lifetime prediction. The custom code uses a toroidal geometry, and employs a range of empirical data rather than trying to fit classical erosion models to a particular circumstance. The data used was obtained relatively quickly and easily from a gas-blast erosion tester. A full-scale pneumatic conveying rig was used to validate a sample of the bend lifetime predictions, and the results suggest accuracy of within ±65%, using calibration methods. Finally, the work is distilled into user-friendly interactive software that will make erosion lifetime predictions for a wide range of bends under varying conveying conditions. This could be a valuable tool for the pneumatic conveyor design or maintenance engineer.
Resumo:
External climate forcings-such as long-term changes in solar insolation-generate different climate responses in tropical and high latitude regions(1). Documenting the spatial and temporal variability of past climates is therefore critical for understanding how such forcings are translated into regional climate variability. In contrast to the data-richmiddle and high latitudes, high-quality climate-proxy records from equatorial regions are relatively few(2-4), especially from regions experiencing the bimodal seasonal rainfall distribution associated with twice-annual passage of the Intertropical Convergence Zone. Here we present a continuous and well-resolved climate-proxy record of hydrological variability during the past 25,000 years from equatorial East Africa. Our results, based on complementary evidence from seismic-reflection stratigraphy and organic biomarker molecules in the sediment record of Lake Challa near Mount Kilimanjaro, reveal that monsoon rainfall in this region varied at half-precessional (similar to 11,500-year) intervals in phase with orbitally controlled insolation forcing. The southeasterly and northeasterly monsoons that advect moisture from the western Indian Ocean were strengthened in alternation when the inter-hemispheric insolation gradient was at a maximum; dry conditions prevailed when neither monsoon was intensified and modest local March or September insolation weakened the rain season that followed. On sub-millennial timescales, the temporal pattern of hydrological change on the East African Equator bears clear high-northern-latitude signatures, but on the orbital timescale it mainly responded to low-latitude insolation forcing. Predominance of low-latitude climate processes in this monsoon region can be attributed to the low-latitude position of its continental regions of surface air flow convergence, and its relative isolation from the Atlantic Ocean, where prominent meridional overturning circulation more tightly couples low-latitude climate regimes to high-latitude boundary conditions.
Resumo:
Rotational molding is a process used to manufacture hollow plastic products, and has been heralded as a molding method with great potential. Reduction of cycle times is an important issue for the rotational molding industry, addressing a significant disadvantage of the process. Previous attempts to reduce cycle times have addressed surface enhanced molds, internal pressure, internal cooling, water spray cooling, and higher oven air flow rates within the existing process. This article explores the potential benefits of these cycle time reduction techniques, and combinations of them. Recommendations on a best practice combination are made, based on experimental observations and resulting product quality. Applying the proposed molding conditions (i.e., a combination of surface-enhanced molds, higher oven flow rates, internal mold pressure, and water spray cooling), cycle time reductions of up to 70% were achieved. Such savings are very significant, inviting the rotomolding community to incorporate these techniques efficiently in an industrial setting. POLYM. ENG. SCI., 49:1846-1854, 2009. (C) 2009 Society of Plastics Engineers
Resumo:
To maintain its relevance, motorsport cannot be exempt from
the trend of increasing fuel economy. This bears obvious
competitive benefits as well, either in decreasing the
frequency of pit stops or the mass of fuel carried. Given the
increased points weighting of fuel economy for the Formula
Student (FS) competition, a complete analysis was performed
on the Queen's Formula Racing 600cc motorcycle engine in
preparation for the 2011 competition.
The criteria for such high performance fuel economy differ to
a degree from most mass transportation counterparts and were
divided into three distinct regimes; full load, part load and no
load conditions.
Full load positions naturally demand maximum torque for
performance but that does not imply that fuel savings cannot
be made whilst preserving this. The point at which maximum
torque is produced with minimum air -fuel ratio, Leanest
mixture for Best Torque (LBT), was therefore sought and
mapped for full load.
At part load, torque is less of a concern, and maintaining a
sustainable engine temperature and transient response become
more important. With decreasing AFR, engine temperatures
can rise dramatically so temperatures were measured close to
the exhaust port for a wide range of air-fuel ratios.
Competition track data was analysed to highlight key part load
operating regions and these were mapped according to
measured safe temperature limits. Torque response to a step
throttle change was also measured to ensure suitable engine
transient performance was maintained.
At no load conditions, with low engine speed only idle
conditions need to be satisfied. In the situation where the
engine is still at high speed without load, the engine is being
motored and no fuel is required. An overrun fuel cut was
employed to reflect this giving significant fuel savings. The
effect on torque and engine pickup was measured.
Modifications were also made to the fuel injector location to
improve fuel mixing and evaporation at this lower air flow
condition.
These mapping regimes were implemented and tested using
fully transient lap simulations using competition track data
and a four quadrant AC engine dynamometer. The experiment
indicated a reduction in fuel consumption for 22 laps of the FS
track from 5.08litres to 3.67litres, around 27% in total. The
actual fuel used at the 2011 competition was 3.6 litres while
placing 8th in the endurance event, further validating the
benefits of these mapping regimes.
Resumo:
A Design of Experiments (DoE) analysis was undertaken to generate a list of configurations for CFD numerical simulation of an aircraft crown compartment. Fitted regression models were built to predict the convective heat transfer coefficients of thermally sensitive dissipating elements located inside this compartment. These are namely the SEPDC and the Route G. Currently they are positioned close to the fuselage and it is of interest to optimise the heat transfer for reliability and performance purposes. Their locations and the external fuselage surface temperature were selected as input variables for the DoE. The models fit the CFD data with values ranging from 0.878 to 0.978, and predict that the optimum locations in terms of heat transfer are when the elements are positioned as close to the crown floor as possible ( and ?min. limits), where they come in direct contact with the air flow from the cabin ventilation system, and when they are positioned close to the centreline ( and ?CL). The methodology employed allows aircraft thermal designers to optimise equipment placement in confined areas of an aircraft during the design phase. The determined models should be incorporated into global aircraft numerical models to improve accuracy and reduce model size and computational time. © 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Conversion of agricultural biomass such as wood chips, wheat straw and forest residue for the production of fuels can help in reducing GHG emissions since they are considered as nearly carbon neutral. Around the world there is a significant amount of forest and agricultural-biomass available which could be used for the production of liquid fuels that can be blended with the petroleum-based diesel. Oxymethylene ethers (OMEs) can be derived from biomass via gasification, water-gas shift reaction and methanol production. The addition of OMEs to conventional diesel fuel has great potential to reduce soot formation during the combustion in diesel engines. Unlike methanol and dimethyl ether (DMM) which can also reduce soot formation, the physical properties of OMEs allow the use in modern diesel engines without significant change of the engines infrastructure. In this study, a detailed and data intensive process simulation model was developed to simulate all the unit operations involved in the production of OMEs from biomass. The unit operation considered include biomass drying, gasification, gas cleaning, water gas shift reaction, methanol production and OMEs synthesis. The simulation results were then utilized to conduct a detailed techno-economic assessment study of the whole biomass conversion chain to determine the most attractive pathways for OMEs production. Our recent study shows that the key parameters affecting the OMEs production are equivalence ratio, H2/CO ratio and optimal air flow. Overall, the cost of production ($/liter) of OMEs from different biomass feedstock in Alberta will be determined
Resumo:
Portugal has strong musical traditions, which have been perpetrated by decades through folkloristic activities. In folk groups from Alto Minho (north of Portugal), folk singing is mostly performed by cantadeiras, amateur female solo singers who learn this style orally. Their vocal characteristics are distinctive when compared with other regions of the country; however, deep understanding of these vocal practices is still missing. The present work aims at studying Alto Minho cantadeira’s vocal performance in a multidimensional perspective, envisioning social, cultural and physiological understanding of this musical style. Thus, qualitative and quantitative data analyses were carried out, to: (i) describe current performance practices, (ii) explore existent perceptions about most relevant voice features in this region, (iii) investigate physiological and acoustic properties of this style, and (iv) compare this style of singing with other non-classical singing styles of other countries. Dataset gathered involved: 78 groups whose members were telephone interviewed, 13 directors who were asked to fill in a questionnaire on performance practices, 1 cantadeira in a pilot study, 16 cantadeiras in preliminary voice recordings, 77 folk group members in listening tests, and 10 cantadeiras in multichannel recordings, including audio, ELG, air flow and intra-oral pressure signals. Data were analysed through thematic content analysis, descriptive and inferential statistics, hierarchical principal components, and multivariate linear regression models. Most representative voices have a high pitched and loud voice, with a bright timbre, predominance of chest register without excessive effort, and good text intelligibility with regional accent. High representativeness levels were obtained by few cantadeiras; these sing with high levels of subglottal pressure and vocal fold contact quotient, predominance of high spectrum energy and vocal loudness, corroborating indications of prevalence of pressed phonation. These vocal characteristics resemble belting in musical theatre and share similarities with country (USA) and ojikanje (Croatia) singing. Strategies that may contribute to the preservation of this type of singing and the vocal health of current cantadeiras are discussed, pointing at the direction of continuous education among folk groups, following practices that are already adopted elsewhere in Europe.
Resumo:
Neste trabalho é desenvolvido um estudo comparativo de vários sistemas de ventilação, baseados em jactos localizados. Foram avaliados, para cada um deles, o nível da qualidade do ar interior, conforto térmico, desconforto térmico local (risco de resfriamento) a que os ocupantes estão sujeitos e o índice ADI (Air Distribution Index). O estudo foi efectuado numericamente, a partir de dois softwares acoplados, e experimentalmente, a partir de uma sala de aula desenvolvida a escala real. Nesta sala de aulas, equipada com 6 ou 12 ocupantes e com 6 secretárias, foram analisados sistemas de ventilação com jactos verticais descendentes, localizados em cima (mais afastado e mais próximo do nível da cabeça dos ocupantes) e à frente dos ocupantes, e com jactos horizontais, localizados em frente dos ocupantes, em cima e em baixo da secretária. O estudo numérico, da interacção do escoamento com os ocupantes, foi efectuado a partir do acoplamento de um software que simula a resposta térmica dos ocupantes (Human Thermal Comfort) e um que simula o escoamento tridimensional em espaços ocupados (Virtual Air Flow - 3D), utilizando o modelo de turbulência RNG. Foi utilizada uma malha não uniforme, com um maior refinamento junto dos obstáculos e nas entradas e saídas de ar. No estudo do projecto do sistema de ventilação baseado em jactos verticais descendentes localizados em cima e mais afastado do nível da cabeça dos ocupantes, foram efectuadas medições experimentais de forma a validar os softwares acoplados e um modelo desenvolvido para calcular o escoamento unidireccional no interior de condutas. Neste estudo foi ainda utilizado um modelo de cálculo das temperaturas das superfícies. Por fim foi realizada uma simulação num contexto mais real, com 6 ocupantes sentados e um ocupante em pé, simulando 6 alunos e um professor, onde foi utilizado o acoplamento dos modelos Human Thermal Comfort e Virtual Air Flow - 3D, o modelo numérico de escoamentos unidireccionais no interior de condutas e o modelo de cálculo das temperaturas das superfícies. São ainda feitas sugestões para a partir deste trabalho, se efectuarem estudos em geometrias mais complexas.