917 resultados para ACCELERATOR FACILITY
Resumo:
To achieve a better time resolution of a scintillator-bar detector for a neutron wall at the external target facility of HIRFL-CSR,we have carried out a detailed study of the photomultiplier,the wrapping material and the coupling media. The timing properties of a scintillator-bar detector have been studied in detail with cosmic rays using a high and low level signal coincidence. A time resolution of 80 ps has been achieved in the center of the scintillator-bar detector.
Resumo:
Timing and amplitude properties of a prototype scintillator TOF counter at an external target facility are studied with a cosmic rays test. The dependence of signal pulse height and time resolution on the coordinate along the scintillator TOF counter is investigated with two different discriminators. A time resolution of 165 ps can be achieved at the center of the counter with a constant fraction discriminator. Time resolution better than 150 ps is obtained at the center with a leading edge discriminator af...
Resumo:
阐述了用于兰州重离子深层治癌装置的扫描电源的技术指标和工作原理,为保证该电源输出电流的精度,采用滞环控制策略,将跟踪误差限制在设计要求的误差范围内。研制了1台扫描电源样机,并给出了电路仿真和测试结果。测试结果显示各项指标均达到了设计要求,表明所选电路结构和滞环控制方案是切实可行的。
Resumo:
IEECAS SKLLQG
Resumo:
Cooler Storage Ring (CSR) of Heavy Ion Research Facility in Lanzhou (HIRFL) consists of a main ring (CSRm) and an experimental ring (CSRe). Two particular C-type dipoles with embedded windings are used in the injection beam line of CSRm. They also act as the prototype dipoles of CSRe. The windings are designed to improve the field quality by their trimming current. The current impacts on field homogeneity and multipole components are investigated by a hall sensor and a long coil, respectively. The experiment shows that a field homogeneity of +/- 1.0 x 10(-3) can be reached by adjusting the trimming currents, though the multipole components change correspondingly. In our case, the quadrupole component is decreased to a low level with the octupole, decapole and 12-pole ones increased slightly when the trimming current is optimized.
Resumo:
To meet the requirements of providing high-intensity heavy ion beams the direct plasma injection scheme (DPIS) was proposed by a RIKEN-CNS-TIT collaboration. In this scheme a radio frequency quadrupole (RFQ) was joined directly with the laser ion source (LIS) without a low-energy beam transport (LEBT) line. To find the best design of the RFQ that will have short length, high transmission efficiency and small emittance growth, beam dynamics designs with equipartitioning design strategy and with matched-only design strategy have been performed, and a comparison of their results has also been done. Impacts of the input beam parameters on transmission efficiency are presented, too. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The beam must be extracted into the air through the vacuum window to irradiate the living cell. In the window design, the material and thickness must be chosen to compromise the beam spot size broadening and the window safety. The structure-static analysis on the window of different structures and materials is done with the finite element analysis method, and the deformation and the equivalent stress axe simulated. The safety of these candidates is investigated using the intensity theory. In addition, the small angle scattering and the transverse range of ions are simulated using SRIM code, including all the effects on the beam spot size broadening, such as the incident ion energy, the material and the thickness of the window and the air composing. At last, the appropriate vacuum windows are presented, including the structure, material and thickness.
Resumo:
In this work, the neutron radiation field at Heavy Ion Research Facility in Lanzhou (HIRFL) was investigated. Total neutron yields, spectra and angular distributions in the bombardment of various thick targets by C-12 and O-18 ions with energies up to 75 MeV/u were obtained using the activation method. The neutron dose equivalent rates of 60 MeV/u O-18 on various thick targets at different angles were measured with a modified A-B remmeter. Our results are compared with those of other reports.
Resumo:
Human hepatoma and normal liver cells were irradiated with C-12(6+), ion beams (LET= 96.05 keV/mu m) and gamma-rays at Heavy Ion Research Facility in Lanzhou (HIRFL). The chromatid breaks and break types were detected using the premature chromosome condensation technique. Our experimental results showed that chromatid breaks seem to have a good relation with C-12(6+) absorbed dose and C-12(6+) are more effective to induce chromatid breaks as compared to they-rays. For C-12(6+) ion irradiation the major break was isochromatid break, while chromatid breaks were dominant for gamma-ray irradiation. We also observed that the Relative Biology Effectiveness (RBE) of C-12(6+) ion is about 2.5 times higher than that of gamma-rays.
Resumo:
The status of the HIRFL (Heavy Ion Facility in Lanzhou) - Cooler Storage Ring (CSR) at the IMP is reported. The main physics goals at the HIRFL-CSR are the researches on nuclear structure and decay property, EOS of nuclear matter, hadron physics, highly charged atomic physics, high energy density physics, nuclear astrophysics, and applications for cancer therapy, space industries, materials and biology sciences. The HIRFL-CSR is the first ion cooler-storage-ring system in China, which consists of a main ring (CSRm), an experimental ring (CSRe) and a radioactive beamline (RIBLL2). The two existing cyclotrons SFC (K=70) and SSC (K=450) are used as its injectors. The 7MeV/u12C6+ ions were stored successfully in CSRm with the stripping injection in January 2006. After that, realized were the accelerations of C-12(6+), Ar-36(18+), Kr-78(28+) and Xe-129(27+) ions with energies of 1GeV/u, 1GeV/u, 450 MeV/u and 235 MeV/u, respectively, including accumulation, electron cooling and acceleration. In 2008, the first two isochronous mass measurement experiments with the primary beams of Ar-36(18+) and Kr-78(28+) were performed at CSRe with the Delta p/p similar to 10(-5).
Resumo:
There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e mu A of O7+, 505 e mu A of Xe20+ 306 e mu A of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.