928 resultados para 640305 Production of unrefined precious metal ingots and concentrates
Resumo:
Porous complex oxides are produced by reacting metal oxide precursors in the presence of a pore-forming material to provide pore sizes in the range of 7-250 nm, followed by removal of the pore-forming material under conditions preserving the structure and compn. of the formed oxides. The pore-forming material are carbon black particles having a particle size of 10-100 nm. The carbon particles are removed from the formed oxide by heating at 100-300°. A surfactant can be added to the reaction mixt. [on SciFinder(R)]
Resumo:
A method for producing metal oxide particles having nano-sized grains is disclosed. A solution of metal cations is mixed with surfactant under conditions such that surfactant micelles are formed. This mixture is then heated to form the metal oxide particles; this heating step removing the surfactant, forming the metal oxide and creating the pore structure of the particles. The pore structures are disordered. This method is particularly advantageous for production of complex (multi-component) metal oxides in which the different atomic species are homogeneously dispersed.
Resumo:
In this paper we will examine passenger actions and activities at the security screening points of Australian domestic and international airports. Our findings and analysis provide a more complete understanding of the current airport passenger security screening experience. Data in this paper is comprised of field studies conducted at two Australian airports, one domestic and one international. Video data was collected by cameras situated either side of the security screening point. A total of one hundred and ninety-six passengers were observed. Two methods of analysis are used. First, the activities of passengers are coded and analysed to reveal the common activities at domestic and international security regimes and between quiet and busy periods. Second, observation of passenger activities is used to reveal uncommon aspects. The results show that passengers do more at security screening that being passively scanned. Passengers queue, unpack the required items from their bags and from their pockets, walk through the metal-detector, re-pack and occasionally return to be re-screened. For each of these activities, passengers must understand the procedures at the security screening point and must co-ordinate various actions and objects in time and space. Through this coordination passengers are active participants in making the security checkpoint function – they are co-producers of the security screening process.
Resumo:
Synthesis of metal borides is typically undertaken at high temperature using direct combinations of elemental starting materials[1]. Techniques include carbothermal reduction using elemental carbon, metals, metal oxides and B2O3[2] or reaction between metal chlorides and boron sources[3]. These reactions generally require temperatures greater than 1200oC and are not readily suitable for an industrial setting nor scalable to bulk production.
Resumo:
Using the polymerase chain reaction, the coding sequence for peanut agglutinin (PNA) was cloned and expressed in Escherichia coli. Amplified PNA is identical to previously reported cDNA, suggesting the absence of any introns in PNA gene. Recombinant (re-) PNA forms inclusion bodies in E. coli. Production of PNA was confirmed by probing Western blots with polyclonal anti-PNA immunoglobulin G. Inclusion bodies were solubilized with 6 M guanidine-HCl and renatured by rapid dilution in the presence of metal ions. The renatured lectin was then purified by affinity chromatography. The re-lectin shows carbohydrate-binding properties similar to the natural PNA. This expression system provides a model for future mutagenesis studies of the carbohydrate-binding site and thus facilitates ongoing efforts to explore the molecular basis for the specificity of lectin-carbohydrate interaction.
Resumo:
Understanding material flow in friction stir welding is important for production of sound dissimilar metal welding that control the intermixing of two alloys being welded and consequent formation of new constituents which influences the weld properties. In the present experimental investigation material flow patterns are visualised using dissimilar and similar aluminium alloys using a simple innovative ,experiment. The experimental results reveal that only a portion of material transported from the leading edge undergoes chaotic flow and the remaining is deposited systematically in the trailing edge of the weld. Using this information it is shown that the formation of a friction stir welding defect, joint line remnant, does not occur only when the weld interface is on the advancing side. The material flow visualisation study has been utilised to analyse the mechanism of weld formation and its usefulness in improving fatigue properties and for dissimilar metal welds.
Resumo:
Pseudomonas maltophilia CSV89, a soil bacterium, produces an extracellular biosurfactant, ''Biosur-Pm''. The partially purified product is nondialyzable and chemically composed of 50% protein and 12-15% sugar, which indicates the complex nature of Biosur-Pm. It reduces the surface tension of water from 73 to 53 x 10(-3) N m(-1) and has a critical micellar concentration of 80 mg/l. Compared to aliphatic hydrocarbons, Biosur-Pm shows good activity against aromatic hydrocarbons. The emulsion formed is stable and does not require any metal ions for emulsification. The kinetics of Biosur-Pm production suggest that its synthesis isa growth-associated and pH-dependent process. At pH 7.0, cells produced more Biosur-Pm with less cell surface hydrophobicity. At pH 8.0, however, the cells produced less Biosur-Pm with more cell surface hydrophobicity and showed a twofold higher affinity for aromatic hydrocarbons compared to the cells grown at pH 7.0. The Biosur-Pm showed a pH-dependent release, stimulated growth of the producer strain on mineral salts medium with 1-naphthoic acid when added externally, and facilitated the conversion of salicylate to catechol. All these results suggest that Biosur-Pm is probably a cell-wall component and helps in hydrocarbon assimilation/uptake.
Resumo:
221 p.
Resumo:
The reaction of producing hydrogen for fuel cell which used normal octane as gasoline or diesel oil reactant through catalytic partial oxidizing and steam reforming method has been researched in the fixed-bed reactor. A series of catalysts that mainly used nickel supported on Al2O3 have been studied. It showed that the activity of the catalyst was increased with the content of nickel by using only nickel supported on Al2O3. However, its activity was not obviously increased when the content of nickel was over 5 wt%. The conversion ratio of normal octane and hydrogen selectivity were higher at higher reaction temperature. The single noble catalyst of palladium had better stability compared with that of platinum catalyst although their activity and selectivity were similar during the experimental reaction temperature. The prepared bimetallic catalyst consisted mainly of nickel and little noble metal of palladium supported on Al2O3. It showed that this catalyst had higher activity and selectivity, especially at lower or higher reaction temperatures compared with single nickel or palladium catalyst, and better stability. ((C) 2001 International Association for Hydrogen Energy. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
By depositing ceria over supported precious metal (PM) catalysts and characterizing them with in situ diffuse reflectance UV (DR UV) and in situ Raman spectroscopy, we have been able to prove a direct correlation between a decrease in ceria band gap and the work function of the metal under reducing conditions. The PM ceria interaction results in changes on the ceria side of the metal ceria interface, such that the degree of oxygen vacancy formation on the ceria surface also correlates with the precious metal work function. Nevertheless, conclusive evidence for a purely electronic interaction could not be provided by X-ray photoelectron spectroscopy (XPS) analysis. On the contrary, the results highlight the complexity of the PM ceria interaction by supporting a spillover mechanism resulting from the electronic interaction under reducing conditions. Under oxidizing conditions, another effect has been observed; namely, a structural modification of ceria induced by the presence of PM cations. In particular, we have been able to demonstrate by in situ Raman spectroscopy that, depending on the PM ionic radius, it is possible to create PM ceria solid solutions. We observed that this structural modification prevails under an oxidizing atmosphere, whereas electronic and chemical interactions take place under reducing conditions.
Resumo:
Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components
Resumo:
Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1 Delta tsa2 Delta) are more resistant to hydrogen peroxide than wildtype (WT) cells and consume it faster under fermentative conditions. Also, tsa1 Delta tsa2 Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1 Delta tsa2 Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu, Zn-superoxide dismutase (Sod1), whose expression and activity increased similar to 5- and 2-fold, respectively, in tsa1 Delta tsa2 Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1 Delta tsa2 Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1 Delta tsa2 Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.
Resumo:
Continuous strip metal matrix composite (MMC) casting of 0.3 mm diameter hard-drawn stainless steel (316L) wire in a quasi-eutectic SnPb (64Sn36Pb) matrix was performed by a two-roll melt drag processing (TRMDping) method, with the wire being dragged through a semisolid puddle with a fibre contact time of approximately 0.2 s. A slag weir placed at the nozzle contained two wire guide holes: one located near the upper roll, and the other located between the rolls. A successful continuous composite strip casting with good fibre alignment was achieved by inserting and embedding the wire into the matrix using the guide hole between the rolls. Degeneration of eutectic/dendrite structures led to the formation of globular structures. The occurrence and formation mechanisms of cracks, de-lamination and voids in the matrix were discussed. TRMDping is economically viable and has significant benefits over other MMC fabrication methods. © (2013) Trans Tech Publications, Switzerland.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)