977 resultados para 3N Bound State


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As an application of the new realistic three-dimensional (3D) formalism reported recently for three-nucleon (3N) bound states, an attempt is made to study the effect of three-nucleon forces (3NFs) in triton binding energy in a non partial wave (PW) approach. The spin-isospin dependent 3N Faddeev integral equations with the inclusion of 3NFs, which are formulated as function of vector Jacobi momenta, specifically the magnitudes of the momenta and the angle between them, are solved with Bonn-B and Tucson-Melbourne NN and 3N forces in operator forms which can be incorporated in our 3D formalism. The comparison with numerical results in both, novel 3D and standard PW schemes, shows that non PW calculations avoid the very involved angular momentum algebra occurring for the permutations and transformations and it is more efficient and less cumbersome for considering the 3NF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using the hyperspherical adiabatic approach in a coupled-channel calculation, we present precise binding energies of excitons trapped by impurity donors in semiconductors within the effective-mass approximation. Energies for such three-body systems are presented as a function of the relative electron-hole mass sigma in the range 1 less than or equal to1/sigma less than or equal to6, where the Born-Oppenheimer approach is not efficiently applicable. The hyperspherical approach leads to precise energies using the intuitive picture of potential curves and nonadiabatic couplings in an ab initio procedure. We also present an estimation for a critical value of sigma (sigma (crit)) for which no bound state can be found. Comparisons are given with results of prior work by other authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We develop a systematic scheme to treat binary collisions between ultracold atoms in the presence of a strong laser field, tuned to the red of the trapping transition. We assume that the Rabi frequency is much less than the spacing between adjacent bound-state resonances, In this approach we neglect fine and hyperfine structures, but consider fully the three-dimensional aspects of the scattering process, up to the partial d wave. We apply the scheme to calculate the S matrix elements up to the second order in the ratio between the Rabi frequency and the laser detuning, We also obtain, fur this simplified multichannel model, the asymmetric line shapes of photoassociation spectroscopy, and the modification of the scattering length due to the light field at low, but finite, entrance kinetic energy. We emphasize that the present calculations can be generalized to treat more realistic models, and suggest how to carry out a thorough numerical comparison to this semianalytic theory. [S1050-2947(98)04902-6].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A system constituted of three bosons interacting via two-body separable potentials with fixed two-boson binding is known to lead to bound-state collapse in the case where the potential parameters allow two-boson S-matrix poles close to (resonance) and on (continuum bound state) the real momentum axis. The collapse is shown to be accompanied by an increase in the average kinetic energy of the two-body bound state, which signals a decrease in the range of the two-body interaction for fixed two-body binding. The collapse is claimed to be a manifestation of the well-known Thomas effect which leads to a collapse of the three-body system when the range of the two-body interaction goes to zero for a fixed two-body binding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A quantum deformed theory applicable to all shape-invariant bound-state systems is introduced by defining q-deformed ladder operators. We show that these new ladder operators satisfy new q-deformed commutation relations. In this context we construct an alternative q-deformed model that preserves the shape-invariance property presented by the primary system. q-deformed generalizations of Morse, Scarf and Coulomb potentials are given as examples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The importance and usefulness of renormalization are emphasized in non-relativistic quantum mechanics. The momentum space treatment of both two-body bound state and scattering problems involving some potentials singular at the origin exhibits ultraviolet divergence. The use of renormalization techniques in these problems leads to finite converged results for both the exact and perturbative solutions. The renormalization procedure is carried out for the quantum two-body problem in different partial waves for a minimal potential possessing only the threshold behaviour and no form factors. The renormalized perturbative and exact solutions for this problem are found to be consistent with each other. The useful role of the renormalization group equations for this problem is also pointed out.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Within the framework of scattering integral equations in momentum space, we present numerical results of scattering of three identical bosons at low energies in two dimensions for short-range separable potentials. An analysis of the present numerical results reveals the three-particle scattering observables to be independent of potential shape provided the low-energy two-particle binding energy and scattering length are held fixed throughout the investigation. We think that the present conclusion of model independence will be valid for any potential, local or nonlocal, whose range is much smaller than the size of the two-particle bound state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A class of shape-invariant bound-state problems which represent two-level systems are introduced. It is shown that the coupled-channel Hamiltonians obtained correspond to the generalization of the Jaynes-Cummings Hamiltonian.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A class of shape-invariant bound-state problems which represent transitions in a two-level system introduced earlier are generalized to include arbitrary energy splittings between the two levels as well as intensity-dependent interactions. We show that the coupled-channel Hamiltonians obtained correspond to the generalizations of the nonresonant and intensity-dependent Jaynes-Cummings Hamiltonians, widely used in quantized theories of lasers. In this general context, we determine the eigenstates, eigenvalues, the time evolution matrix and the population inversion matrix factor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied e+-Li and e+-Na scattering using the close-coupling approximation in the static and coupled static expansion schemes. The effect of the positronium formation on the elastic channel is found to be strong in both cases. In the case of the lithium atom the effect is dramatic; the inclusion of the positronium formation channel transforms the purely repulsive effective e+-Li S wave (static) potential to a predominantly attractive (coupled static) potential. In this case, in the static model delta(0)-delta(infinity) = 0, whereas in the coupled static model delta(0)-delta(infinity)=pi. According to Levinson's theorem this suggests the presence of a S wave bound or continuum bound state in the e+-Li system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the quark model of the nucleon, the Fermi statistics of the elementary constituents can influence significantly the properties of multinucleon bound systems. In the Skyrme model, on the other hand, the basic quanta are bosons, so that qualitatively different statistics effects can be expected a priori. In order to illustrate this point, we construct schematic one-dimensional quark and soliton models which yield fermionic nucleons with identical baryon densities. We then compare the baryon densities of a two-nucleon bound state in both models. Whereas in the quark model the Pauli principle for quarks leads to a depletion of the density in the central region of the nucleus, the soliton model predicts a slight increase of the density in that region, due to the bosonic statistics of the meson-field quanta.