985 resultados para 3D point


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objetivo: Evaluar la eficacia del tratamiento en 3 casos de exotropia intermitente (XT(i)) mediante ejercicios de terapia visual, completando la exploración clínica con Videooculografia-30 y evidenciar la potencial aplicabilidad de esta tecnología para dicho propósito. Métodos: Exponemos los cambios ocurridos tras ejercicios de terapia visual en una mujer de 36 años con XT(i) de -25 dioptrías prismáticas (dp) de lejos y 18 dp de cerca; Un niño de 10 años de edad con 8 dp de XT(i) en posición primaria, asociados a +6 dp de hipotropia izquierda; y un hombre de 63 años con XT(i) de 6 dp en posición primaria asociada a +7 dp de hipertropia derecha. Todos los pacientes presentaron buena agudeza visual corregida en ambos ojos. La inestabilidad de la desviación ocular se evidenció mediante análisis de VOG-30, revelando la presencia de components verticales y torsionales. Se realizaron ejercicios de terapia visual, incluyendo diferentes tipos de ejercicios de vergencias, acomodación y percepción de la diplopía. Resultados: Tras la terapia visual se obtuvieron excelentes rangos de vergencias fusionales y de punto próximo de convergencia («hasta la nariz»). El examen mediante VOG-3D (Sensoro Motoric lnstruments, Teltow, Germany) confirmó la compensación de la desviación con estabilidad del alineamiento ocular. Se observó una significativa mejora después de la terapia en los components verticals y torsionales, lo cuales se hicieron más estables. Los pacientes se mostraron muy satisfechos de los resultados obtenidos. Conclusión: La VOG-3D es una técnica útil para dotamos de un método objetivo de registro de la compensación y estabilidad de la desviación ocular después de realizar ejercicios de terapia visual en casos de XT(i), ofreciéndonos un detallado análisis de la mejoría de los components verticales y torsionales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we propose the use of the neural gas (NG), a neural network that uses an unsupervised Competitive Hebbian Learning (CHL) rule, to develop a reverse engineering process. This is a simple and accurate method to reconstruct objects from point clouds obtained from multiple overlapping views using low-cost sensors. In contrast to other methods that may need several stages that include downsampling, noise filtering and many other tasks, the NG automatically obtains the 3D model of the scanned objects. To demonstrate the validity of our proposal we tested our method with several models and performed a study of the neural network parameterization computing the quality of representation and also comparing results with other neural methods like growing neural gas and Kohonen maps or classical methods like Voxel Grid. We also reconstructed models acquired by low cost sensors that can be used in virtual and augmented reality environments for redesign or manipulation purposes. Since the NG algorithm has a strong computational cost we propose its acceleration. We have redesigned and implemented the NG learning algorithm to fit it onto Graphics Processing Units using CUDA. A speed-up of 180× faster is obtained compared to the sequential CPU version.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, the requirement of professional skills to university students is constantly increasing in our society. In our opinion, the content offered in official degrees need to be nourished with different variables, enriching their global professional knowledge in a parallel way; that is why, in recent years, there is a great multiplicity of complementary courses at university. One of the most socially demanded technical requirements within the architectural, design or engineering field is the management of 3D drawing software, becoming an indispensable reality in these sectors. Thus, this specific training becomes essential over two-dimension traditional design, because the inclusion of great possibilities of spatial development that go beyond conventional orthographic projections (plans, sections or elevations), allowing modelling and rotation of the selected items from multiple angles and perspectives. Therefore, this paper analyzes the teaching methodology of a complementary course for those technicians in the construction industry interested in computer-aided design, using modelling (SketchupMake) and rendering programs (Kerkythea). The course is developed from the technician point of view, by learning computer management and its application to professional development from a more general to a more specific view through practical examples. The proposed methodology is based on the development of real examples in different professional environments such as rehabilitation, new constructions, opening projects or architectural design. This multidisciplinary contribution improves criticism of students in different areas, encouraging new learning strategies and the independent development of three-dimensional solutions. Thus, the practical implementation of new situations, even suggested by the students themselves, ensures active participation, saving time during the design process and the increase of effectiveness when generating elements which may be represented, moved or virtually tested. In conclusion, this teaching-learning methodology improves the skills and competencies of students to face the growing professional demands of society. After finishing the course, technicians not only improved their expertise in the field of drawing but they also enhanced their capacity for spatial vision; both essential qualities in these sectors that can be applied to their professional development with great success.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Durante los últimos años ha sido creciente el uso de las unidades de procesamiento gráfico, más conocidas como GPU (Graphic Processing Unit), en aplicaciones de propósito general, dejando a un lado el objetivo para el que fueron creadas y que no era otro que el renderizado de gráficos por computador. Este crecimiento se debe en parte a la evolución que han experimentado estos dispositivos durante este tiempo y que les ha dotado de gran potencia de cálculo, consiguiendo que su uso se extienda desde ordenadores personales a grandes cluster. Este hecho unido a la proliferación de sensores RGB-D de bajo coste ha hecho que crezca el número de aplicaciones de visión que hacen uso de esta tecnología para la resolución de problemas, así como también para el desarrollo de nuevas aplicaciones. Todas estas mejoras no solamente se han realizado en la parte hardware, es decir en los dispositivos, sino también en la parte software con la aparición de nuevas herramientas de desarrollo que facilitan la programación de estos dispositivos GPU. Este nuevo paradigma se acuñó como Computación de Propósito General sobre Unidades de Proceso Gráfico (General-Purpose computation on Graphics Processing Units, GPGPU). Los dispositivos GPU se clasifican en diferentes familias, en función de las distintas características hardware que poseen. Cada nueva familia que aparece incorpora nuevas mejoras tecnológicas que le permite conseguir mejor rendimiento que las anteriores. No obstante, para sacar un rendimiento óptimo a un dispositivo GPU es necesario configurarlo correctamente antes de usarlo. Esta configuración viene determinada por los valores asignados a una serie de parámetros del dispositivo. Por tanto, muchas de las implementaciones que hoy en día hacen uso de los dispositivos GPU para el registro denso de nubes de puntos 3D, podrían ver mejorado su rendimiento con una configuración óptima de dichos parámetros, en función del dispositivo utilizado. Es por ello que, ante la falta de un estudio detallado del grado de afectación de los parámetros GPU sobre el rendimiento final de una implementación, se consideró muy conveniente la realización de este estudio. Este estudio no sólo se realizó con distintas configuraciones de parámetros GPU, sino también con diferentes arquitecturas de dispositivos GPU. El objetivo de este estudio es proporcionar una herramienta de decisión que ayude a los desarrolladores a la hora implementar aplicaciones para dispositivos GPU. Uno de los campos de investigación en los que más prolifera el uso de estas tecnologías es el campo de la robótica ya que tradicionalmente en robótica, sobre todo en la robótica móvil, se utilizaban combinaciones de sensores de distinta naturaleza con un alto coste económico, como el láser, el sónar o el sensor de contacto, para obtener datos del entorno. Más tarde, estos datos eran utilizados en aplicaciones de visión por computador con un coste computacional muy alto. Todo este coste, tanto el económico de los sensores utilizados como el coste computacional, se ha visto reducido notablemente gracias a estas nuevas tecnologías. Dentro de las aplicaciones de visión por computador más utilizadas está el registro de nubes de puntos. Este proceso es, en general, la transformación de diferentes nubes de puntos a un sistema de coordenadas conocido. Los datos pueden proceder de fotografías, de diferentes sensores, etc. Se utiliza en diferentes campos como son la visión artificial, la imagen médica, el reconocimiento de objetos y el análisis de imágenes y datos de satélites. El registro se utiliza para poder comparar o integrar los datos obtenidos en diferentes mediciones. En este trabajo se realiza un repaso del estado del arte de los métodos de registro 3D. Al mismo tiempo, se presenta un profundo estudio sobre el método de registro 3D más utilizado, Iterative Closest Point (ICP), y una de sus variantes más conocidas, Expectation-Maximization ICP (EMICP). Este estudio contempla tanto su implementación secuencial como su implementación paralela en dispositivos GPU, centrándose en cómo afectan a su rendimiento las distintas configuraciones de parámetros GPU. Como consecuencia de este estudio, también se presenta una propuesta para mejorar el aprovechamiento de la memoria de los dispositivos GPU, permitiendo el trabajo con nubes de puntos más grandes, reduciendo el problema de la limitación de memoria impuesta por el dispositivo. El funcionamiento de los métodos de registro 3D utilizados en este trabajo depende en gran medida de la inicialización del problema. En este caso, esa inicialización del problema consiste en la correcta elección de la matriz de transformación con la que se iniciará el algoritmo. Debido a que este aspecto es muy importante en este tipo de algoritmos, ya que de él depende llegar antes o no a la solución o, incluso, no llegar nunca a la solución, en este trabajo se presenta un estudio sobre el espacio de transformaciones con el objetivo de caracterizarlo y facilitar la elección de la transformación inicial a utilizar en estos algoritmos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the beginning of 3D computer vision problems, the use of techniques to reduce the data to make it treatable preserving the important aspects of the scene has been necessary. Currently, with the new low-cost RGB-D sensors, which provide a stream of color and 3D data of approximately 30 frames per second, this is getting more relevance. Many applications make use of these sensors and need a preprocessing to downsample the data in order to either reduce the processing time or improve the data (e.g., reducing noise or enhancing the important features). In this paper, we present a comparison of different downsampling techniques which are based on different principles. Concretely, five different downsampling methods are included: a bilinear-based method, a normal-based, a color-based, a combination of the normal and color-based samplings, and a growing neural gas (GNG)-based approach. For the comparison, two different models have been used acquired with the Blensor software. Moreover, to evaluate the effect of the downsampling in a real application, a 3D non-rigid registration is performed with the data sampled. From the experimentation we can conclude that depending on the purpose of the application some kernels of the sampling methods can improve drastically the results. Bilinear- and GNG-based methods provide homogeneous point clouds, but color-based and normal-based provide datasets with higher density of points in areas with specific features. In the non-rigid application, if a color-based sampled point cloud is used, it is possible to properly register two datasets for cases where intensity data are relevant in the model and outperform the results if only a homogeneous sampling is used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the insight gained from 2-D particle models, and given that the dynamics of crustal faults occur in 3-D space, the question remains, how do the 3-D fault gouge dynamics differ from those in 2-D? Traditionally, 2-D modeling has been preferred over 3-D simulations because of the computational cost of solving 3-D problems. However, modern high performance computing architectures, combined with a parallel implementation of the Lattice Solid Model (LSM), provide the opportunity to explore 3-D fault micro-mechanics and to advance understanding of effective constitutive relations of fault gouge layers. In this paper, macroscopic friction values from 2-D and 3-D LSM simulations, performed on an SGI Altix 3700 super-cluster, are compared. Two rectangular elastic blocks of bonded particles, with a rough fault plane and separated by a region of randomly sized non-bonded gouge particles, are sheared in opposite directions by normally-loaded driving plates. The results demonstrate that the gouge particles in the 3-D models undergo significant out-of-plane motion during shear. The 3-D models also exhibit a higher mean macroscopic friction than the 2-D models for varying values of interparticle friction. 2-D LSM gouge models have previously been shown to exhibit accelerating energy release in simulated earthquake cycles, supporting the Critical Point hypothesis. The 3-D models are shown to also display accelerating energy release, and good fits of power law time-to-failure functions to the cumulative energy release are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the creation of 3D statistical shape models of the knee bones and their use to embed information into a segmentation system for MRIs of the knee. We propose utilising the strong spatial relationship between the cartilages and the bones in the knee by embedding this information into the created models. This information can then be used to automate the initialisation of segmentation algorithms for the cartilages. The approach used to automatically generate the 3D statistical shape models of the bones is based on the point distribution model optimisation framework of Davies. Our implementation of this scheme uses a parameterized surface extraction algorithm, which is used as the basis for the optimisation scheme that automatically creates the 3D statistical shape models. The current approach is illustrated by generating 3D statistical shape models of the patella, tibia and femoral bones from a segmented database of the knee. The use of these models to embed spatial relationship information to aid in the automation of segmentation algorithms for the cartilages is then illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an automated segmentation approach for MR images of the knee bones. The bones are the first stage of a segmentation system for the knee, primarily aimed at the automated segmentation of the cartilages. The segmentation is performed using 3D active shape models (ASM), which are initialized using an affine registration to an atlas. The 3D ASMs of the bones are created automatically using a point distribution model optimization scheme. The accuracy and robustness of the segmentation approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrate the integration of a 3D hydrogel matrix within a hollow core photonic crystal fibre (HC-PCF). In addition, we also show the fluorescence of Cy5-labelled DNA molecules immobilized within the hydrogel formed in two different types of HC-PCF. The 3D hydrogel matrix is designed to bind with the amino groups of biomolecules using an appropriate cross-linker, providing higher sensitivity and selectivity than the standard 2D coverage, enabling a greater number of probe molecules to be available per unit area. The HC-PCFs, on the other hand, can be designed to maximize the capture of fluorescence to improve sensitivity and provide longer interaction lengths. This could enable the development of fibre-based point-of-care and remote systems, where the enhanced sensitivity would relax the constraints placed on sources and detectors. In this paper, we will discuss the formation of such polyethylene glycol diacrylate (PEGDA) hydrogels within a HC-PCF, including their optical properties such as light propagation and auto-fluorescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a video-based system which interactively captures the geometry of a 3D object in the form of a point cloud, then recognizes and registers known objects in this point cloud in a matter of seconds (fig. 1). In order to achieve interactive speed, we exploit both efficient inference algorithms and parallel computation, often on a GPU. The system can be broken down into two distinct phases: geometry capture, and object inference. We now discuss these in further detail. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper details methodologies that have been explored for the fast proofing of on-chip architectures for Circular Dichroism techniques. Flow-cell devices fabricated from UV transparent Quartz are used for these experiments. The complexity of flow-cell production typically results in lead times of six months from order to delivery. Only at that point can the on-chip architecture be tested empirically and any required modifications determined ready for the next six month iteration phase. By using the proposed 3D printing and PDMS moulding techniques for fast proofing on-chip architectures the optimum design can be determined within a matter of hours prior to commitment to quartz chip production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As complex radiotherapy techniques become more readily-practiced, comprehensive 3D dosimetry is a growing necessity for advanced quality assurance. However, clinical implementation has been impeded by a wide variety of factors, including the expense of dedicated optical dosimeter readout tools, high operational costs, and the overall difficulty of use. To address these issues, a novel dry-tank optical CT scanner was designed for PRESAGE 3D dosimeter readout, relying on 3D printed components and omitting costly parts from preceding optical scanners. This work details the design, prototyping, and basic commissioning of the Duke Integrated-lens Optical Scanner (DIOS).

The convex scanning geometry was designed in ScanSim, an in-house Monte Carlo optical ray-tracing simulation. ScanSim parameters were used to build a 3D rendering of a convex ‘solid tank’ for optical-CT, which is capable of collimating a point light source into telecentric geometry without significant quantities of refractive-index matched fluid. The model was 3D printed, processed, and converted into a negative mold via rubber casting to produce a transparent polyurethane scanning tank. The DIOS was assembled with the solid tank, a 3W red LED light source, a computer-controlled rotation stage, and a 12-bit CCD camera. Initial optical phantom studies show negligible spatial inaccuracies in 2D projection images and 3D tomographic reconstructions. A PRESAGE 3D dose measurement for a 4-field box treatment plan from Eclipse shows 95% of voxels passing gamma analysis at 3%/3mm criteria. Gamma analysis between tomographic images of the same dosimeter in the DIOS and DLOS systems show 93.1% agreement at 5%/1mm criteria. From this initial study, the DIOS has demonstrated promise as an economically-viable optical-CT scanner. However, further improvements will be necessary to fully develop this system into an accurate and reliable tool for advanced QA.

Pre-clinical animal studies are used as a conventional means of translational research, as a midpoint between in-vitro cell studies and clinical implementation. However, modern small animal radiotherapy platforms are primitive in comparison with conventional linear accelerators. This work also investigates a series of 3D printed tools to expand the treatment capabilities of the X-RAD 225Cx orthovoltage irradiator, and applies them to a feasibility study of hippocampal avoidance in rodent whole-brain radiotherapy.

As an alternative material to lead, a novel 3D-printable tungsten-composite ABS plastic, GMASS, was tested to create precisely-shaped blocks. Film studies show virtually all primary radiation at 225 kVp can be attenuated by GMASS blocks of 0.5cm thickness. A state-of-the-art software, BlockGen, was used to create custom hippocampus-shaped blocks from medical image data, for any possible axial treatment field arrangement. A custom 3D printed bite block was developed to immobilize and position a supine rat for optimal hippocampal conformity. An immobilized rat CT with digitally-inserted blocks was imported into the SmART-Plan Monte-Carlo simulation software to determine the optimal beam arrangement. Protocols with 4 and 7 equally-spaced fields were considered as viable treatment options, featuring improved hippocampal conformity and whole-brain coverage when compared to prior lateral-opposed protocols. Custom rodent-morphic PRESAGE dosimeters were developed to accurately reflect these treatment scenarios, and a 3D dosimetry study was performed to confirm the SmART-Plan simulations. Measured doses indicate significant hippocampal sparing and moderate whole-brain coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O bin picking é um processo de grande interesse na indústria, uma vez que permite maior automatização, aumento da capacidade de produção e redução dos custos. Este tem vindo a evoluir bastante ao longo dos anos e essa evolução fez com que sistemas de perceção 3D começassem a ser implementados. Este trabalho tem como principal objetivo desenvolver um sistema de bin picking usando apenas perceção 3D. O sistema deve ser capaz de determinar a posição e orientação de objetos com diferentes formas e tamanhos, posicionados aleatoriamente numa superfície de trabalho. Os objetos utilizados para fazer os testes experimentais, são esferas, cilindros e prismas, uma vez que abrangem as formas geométricas existentes em muitos produtos submetidos a bin picking. Após a identi cação e seleção do objeto a apanhar, o manipulador deve autonomamente posicionar-se para fazer a aproximação e recolha do mesmo. A aquisição de dados é feita através de uma câmara Kinect. Dos dados recebidos apenas são trabalhados os referentes à profundidade, centrando-se assim este trabalho na análise e tratamento de nuvem de pontos. O sistema desenvolvido cumpre com os objetivos estabelecidos. Consegue localizar e apanhar objetos em várias posições e orientações. Além disso apresenta uma velocidade de processamento compatível com a aplicação em causa.