Integration of a 3D hydrogel matrix within a hollow core photonic crystal fibre for DNA probe immobilization


Autoria(s): Rutowska, Monika S.; Garcia Gunning, Fatima C.; Kivlehan, Francine; Moore, Eric; Brennan, Des; Galvin, Paul; Ellis, Andrew D.
Data(s)

01/09/2010

Resumo

In this paper, we demonstrate the integration of a 3D hydrogel matrix within a hollow core photonic crystal fibre (HC-PCF). In addition, we also show the fluorescence of Cy5-labelled DNA molecules immobilized within the hydrogel formed in two different types of HC-PCF. The 3D hydrogel matrix is designed to bind with the amino groups of biomolecules using an appropriate cross-linker, providing higher sensitivity and selectivity than the standard 2D coverage, enabling a greater number of probe molecules to be available per unit area. The HC-PCFs, on the other hand, can be designed to maximize the capture of fluorescence to improve sensitivity and provide longer interaction lengths. This could enable the development of fibre-based point-of-care and remote systems, where the enhanced sensitivity would relax the constraints placed on sources and detectors. In this paper, we will discuss the formation of such polyethylene glycol diacrylate (PEGDA) hydrogels within a HC-PCF, including their optical properties such as light propagation and auto-fluorescence.

Formato

application/pdf

Identificador

http://eprints.aston.ac.uk/18075/1/Integration_of_a_3D_hydrogel_matrix.pdf

Rutowska, Monika S.; Garcia Gunning, Fatima C.; Kivlehan, Francine; Moore, Eric; Brennan, Des; Galvin, Paul and Ellis, Andrew D. (2010). Integration of a 3D hydrogel matrix within a hollow core photonic crystal fibre for DNA probe immobilization. Measurement Science and Technology, 21 (9),

Relação

http://eprints.aston.ac.uk/18075/

Tipo

Article

PeerReviewed