999 resultados para 1995_01300042 TM-63 4302803
Resumo:
采用提拉法(CZ)生长了质量优异的Tm:YAG晶体.部分晶片在1000℃的空气气氛中退火25h.借助光学显微镜、扫描电子显微镜(SEM),结合化学腐蚀法,对Tm:YAG晶体退火前后(111)面的缺陷特征进行了研究.Tm:YAG晶体(111)面的位错腐蚀坑呈三角形.在偏光显微镜下观察了退火前后Tm:YAG晶体(111)面的应力双折射.同时应用高分辨X射线衍射法测定了晶体的完整性.实验结果表明,长时间空气气氛下高温退火有效降低了晶体中总的位错密度,提高了晶体质量.
Resumo:
Tm:YAG晶体是性能优异的LD泵浦激光晶体。本文总结了Tm:YAG晶体的生长、光谱性质以及激光性能的研究和发展,并指出了Tm:YAG晶体发展中需要解决的问题。
Resumo:
By using a pump recycling configuration, the maximum power of 8.1 W in the wavelength range 1.935-1.938 mu m is generated by a 5-mm long Tm:YAlO3 (4 at. %) laser operating at 18 degrees C with a pump power of 24 W. The highest slope efficiency of 42% is attained, and the pump quantum efficiency is up to 100%. The Tm:YAlO3 laser is employed as a pumping source of singly-doped Ho(l%):GdVO4 laser operating at room temperature, in which continuous wave output power of greater than 0.2 W at 2.05 mu m is achieved with a slope efficiency of 9%.
Resumo:
Absorption spectrum from 400 to 2000 run and upconversion fluorescence spectra under 940 nm pumping of YAG single crystal codoped with 5 at.% Yb3+ and 4 at.% Tm3+ were studied at room temperature. The blue upconversion emission centered at 483 nm corresponds to the transition (1)G(4) -> H-3(6), the emission band around 646 nm corresponds to the transition (1)G(4) -> F-3(4) of Tm3+. Energy transfer from Yb3+ to Tm3+ is mainly nonradiative and the transfer efficiency was experimentally assessed. The line strengths, transition probabilities and radiative lifetimes of (1)G(4) level were calculated by using Judd-Ofelt theory. Gain coefficient calculated from spectra shows that the upconversion corresponding with transitions (1)G(4) -> H-3(6) in YAG doped with Yb3+ and Tm3+ is potentially useful for blue light Output. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
为实现室温下小型化、高效率的1.9μm激光输出,采用793.5 nm激光二极管泵浦Tm:YAP晶体,晶体采用热电制冷及风冷的方式控制在18℃,采用1∶1的聚焦耦系统,获得功率为2.2 W、中心波长为1928 nm的激光输出,光光转换效率为31%,斜率效率达41%。对影响激光输出的耦合输出率、腔型、腔长、晶体工作温度等因素进行了实验分析,实验结果表明:输出功率的变化与温度基本成线性关系,当增加激光谐振腔长时,由于高阶模式损耗加大以及晶体热透镜效应的加重导致腔内损耗加大,输出功率和斜率效率都有所下降。
Resumo:
2μm波长激光对人眼安全,在相干探测风切变、非线性频率转换等方面有重要应用。2μm波长激光还可应用到激光医疗,由于其吸收深度浅,手术精度高于发射1μm波长的激光。
Resumo:
文章报道了室温下二极管泵浦Tm:YAP激光器,最大输出功率5.2瓦,波长为1981nm,斜率效率是30%。实验测量800nm左右晶体的吸收谱以及1800nm附近的荧光发射谱。此外,讨论了输出功率随晶体工作温度关系。
Resumo:
The YAG crystal codoped with Yb3+ and Tm3+ has been grown by Czochralski (Cz) method. The crystal structure of the crystal has been determined by X-ray diffraction analysis. The absorption and emission spectra of Yb,Tm:YAG crystal at room temperature have also been studied. The emission cross-sections have been calculated by Fuechtbauer-Ladenburg formula and reciprocity method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper reports that the TM3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The room-temperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Omega(2)=9.3155 x 10(-20) cm(2), Omega(4)=8.4103 x 10(-20) cm(2), Omega(6)=1.5908 x 10(-20) cm(2), the fluorescence lifetime is calculated to be 2.03 ms for F-3(4) -> H-3(6) transition, and the integrated emission cross section is 5.81 x 10(-18) cm(2). Room-temperature laser action near 2 mu m under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuous-wave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06 mu m with spectral bandwidth of similar to 13.6 nm.
Resumo:
We report the continuous-wave and acousto-optical Q-switched operation of a diode-end-pumped Tm:YAP laser. Continuous-wave output power of 3.5 W at 1.99 mu m was obtained under the absorbed pump power of 14 W. Under Q-switched laser operation, the average output power increased from 1.57 W to 2.0 W, with an absorbed pump power of 12.6 W, as the repetition rate increased from 1 kHz to 10 kHz. The maximum Q-switched pulse energy was 1.57 mJ with a repetition rate of 1 kHz. The minimum pulse width was measured to be about 80 ns, corresponding to a peak power of 19.6 kW.
Resumo:
采用中频感应提拉法生长了高质量的Tm:Y2SiO5(Tm:YSO)晶体,测定了晶体的晶格常数和分凝系数.运用劳厄照相法确定了单斜晶系Tm:YSO晶体的三个偏振轴〈010〉,D1和D2,在室温下测量了三个偏振轴方向的吸收光谱、荧光光谱和荧光寿命,计算了晶体吸收峰的吸收线宽和吸收截面.研究发现,相对于其他两个偏振轴方向,D1方向在790 nm处出现较强的吸收峰,同时在2μm附近出现了一定强度的发射峰,D1方向的吸收截面较大,荧光寿命较长.Tm:YSO晶体适用于AlGaAs二极管抽运固体激光器,在2μm波段固体激光器的应用上将有很大的发展潜力.
Resumo:
采用丘克拉斯基(Czochralski)技术生长了掺铥硅酸镥(Tm∶Lu2SiO5,Tm∶LSO)晶体;测量了LSO晶体在室温下的非偏振吸收光谱和非偏振荧光光谱;利用窄得-奥菲特(Judd-Ofelt)理论计算了Tm∶LSO晶体的窄得-奥菲特强度参数、振子强度、自发辐射概率、辐射寿命、积分吸收截面和积分发射截面.Tm∶LSO晶体的强度参数为Ω2=9.1355×10-20cm2,Ω4=8.4103×10-20cm2,Ω6=1.5908×10-20cm2;Tm∶LSO晶体在1.9μm附近有明显的发射峰(3F4→3H6跃迁),相应的辐射寿命为2.03 ms,积分发射截面为5.81×10-18cm2,半峰全宽(FWHM)为250 nm.用Tm∶LSO晶体在77 K温度下实现了激光运转.利用792 nm的激光二极管(LD)作为抽运源,获得中心波长为1960 nm的激光输出,抽运阈值为2.13 kW/cm2.
Resumo:
We reported on a diode end-pumped AO Q-switched Tm:YAP laser at 1937 nm. The average output power was 3.9 W, with a slope efficiency of 29.4% and optical-optical conversion efficiency of 21.6% at a 5-kHz repetition rate. The temperature dependency of the output power and the pulse width at different repetition rates were investigated in details.
Resumo:
We report on a diode-pumped, cryogenic and room temperature operation of a Tm,Ho:YAlO3 (c-cut) laser. In a temperature of 77 K, an optical-optical conversion efficiency of 27% and a slope efficiency of 29% were achieved with the maximum continuous-wave (CW) output power of 5.0 W at 2.13 mu m. Acousto-optic switched operation was performed at pulse repetition frequency (PRF) from 1 kHz to 10 kHz, the highest pulse energy of 3.3 mJ in a pulse duration of 40 ns was obtained. In room temperature (RT), the maximum CW power of Tm,Ho:YAlO3 laser was 160 mW with a slope efficiency of 11% corresponding to the absorbed pump power. (C) 2008 Optical Society of America.
Resumo:
The Ho:YAP crystal is grown by the Czochralski technique. The room-temperature polarized absorption spectra of Ho:YAP crystal was measured on a c-cut sample with 1 at% holmium. According to the obtained Judd-Ofelt intensity parameters Omega(2) = 1.42 x 10(-20) cm(2), Omega(4) = 2.92 x 10(-20) cm(2), and Omega(6) = 1.71 x 10(-20) cm(2), this paper calculated the fluorescence lifetime to be 6 ms for I-5(7) -> I-5(8) transition, and the integrated emission cross section to be 2.24 x 10(-18) cm(2). It investigates the room-temperature Ho:YAP laser end-pumped by a 1.91-mu m Tm:YLF laser. The maximum output power was 4.1 W when the incident 1.91-mu m pump power was 14.4W. The slope efficiency is 40.8%, corresponding to an optical-to-optical conversion efficiency of 28.4%. The Ho:YAP output wavelength was centred at 2118 nm with full width at half maximum of about 0.8 nm.