983 resultados para 100600 COMPUTER HARDWARE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many people suffer from conditions that lead to deterioration of motor control and makes access to the computer using traditional input devices difficult. In particular, they may loose control of hand movement to the extent that the standard mouse cannot be used as a pointing device. Most current alternatives use markers or specialized hardware to track and translate a user's movement to pointer movement. These approaches may be perceived as intrusive, for example, wearable devices. Camera-based assistive systems that use visual tracking of features on the user's body often require cumbersome manual adjustment. This paper introduces an enhanced computer vision based strategy where features, for example on a user's face, viewed through an inexpensive USB camera, are tracked and translated to pointer movement. The main contributions of this paper are (1) enhancing a video based interface with a mechanism for mapping feature movement to pointer movement, which allows users to navigate to all areas of the screen even with very limited physical movement, and (2) providing a customizable, hierarchical navigation framework for human computer interaction (HCI). This framework provides effective use of the vision-based interface system for accessing multiple applications in an autonomous setting. Experiments with several users show the effectiveness of the mapping strategy and its usage within the application framework as a practical tool for desktop users with disabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A computer model has been developed to optimize the performance of a 50kWp photovoltaic system which supplies electrical energy to a dairy farm at Fota Island in Cork Harbour. Optimization of the system involves maximising the efficiency and increasing the performance and reliability of each hardware unit. The model accepts horizontal insolation, ambient temperature, wind speed, wind direction and load demand as inputs. An optimization program uses the computer model to simulate the optimum operating conditions. From this analysis, criteria are established which are used to improve the photovoltaic system operation. This thesis describes the model concepts, the model implementation and the model verification procedures used during development. It also describes the techniques which are used during system optimization. The software, which is written in FORTRAN, is structured in modular units to provide logical and efficient programming. These modular units may also be used in the modelling and optimization of other photovoltaic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid growth of the Internet and digital communications, the volume of sensitive electronic transactions being transferred and stored over and on insecure media has increased dramatically in recent years. The growing demand for cryptographic systems to secure this data, across a multitude of platforms, ranging from large servers to small mobile devices and smart cards, has necessitated research into low cost, flexible and secure solutions. As constraints on architectures such as area, speed and power become key factors in choosing a cryptosystem, methods for speeding up the development and evaluation process are necessary. This thesis investigates flexible hardware architectures for the main components of a cryptographic system. Dedicated hardware accelerators can provide significant performance improvements when compared to implementations on general purpose processors. Each of the designs proposed are analysed in terms of speed, area, power, energy and efficiency. Field Programmable Gate Arrays (FPGAs) are chosen as the development platform due to their fast development time and reconfigurable nature. Firstly, a reconfigurable architecture for performing elliptic curve point scalar multiplication on an FPGA is presented. Elliptic curve cryptography is one such method to secure data, offering similar security levels to traditional systems, such as RSA, but with smaller key sizes, translating into lower memory and bandwidth requirements. The architecture is implemented using different underlying algorithms and coordinates for dedicated Double-and-Add algorithms, twisted Edwards algorithms and SPA secure algorithms, and its power consumption and energy on an FPGA measured. Hardware implementation results for these new algorithms are compared against their software counterparts and the best choices for minimum area-time and area-energy circuits are then identified and examined for larger key and field sizes. Secondly, implementation methods for another component of a cryptographic system, namely hash functions, developed in the recently concluded SHA-3 hash competition are presented. Various designs from the three rounds of the NIST run competition are implemented on FPGA along with an interface to allow fair comparison of the different hash functions when operating in a standardised and constrained environment. Different methods of implementation for the designs and their subsequent performance is examined in terms of throughput, area and energy costs using various constraint metrics. Comparing many different implementation methods and algorithms is nontrivial. Another aim of this thesis is the development of generic interfaces used both to reduce implementation and test time and also to enable fair baseline comparisons of different algorithms when operating in a standardised and constrained environment. Finally, a hardware-software co-design cryptographic architecture is presented. This architecture is capable of supporting multiple types of cryptographic algorithms and is described through an application for performing public key cryptography, namely the Elliptic Curve Digital Signature Algorithm (ECDSA). This architecture makes use of the elliptic curve architecture and the hash functions described previously. These components, along with a random number generator, provide hardware acceleration for a Microblaze based cryptographic system. The trade-off in terms of performance for flexibility is discussed using dedicated software, and hardware-software co-design implementations of the elliptic curve point scalar multiplication block. Results are then presented in terms of the overall cryptographic system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shared-memory programming model can be an effective way to achieve parallelism on shared memory parallel computers. Historically however, the lack of a programming standard using directives and the limited scalability have affected its take-up. Recent advances in hardware and software technologies have resulted in improvements to both the performance of parallel programs with compiler directives and the issue of portability with the introduction of OpenMP. In this study, the Computer Aided Parallelisation Toolkit has been extended to automatically generate OpenMP-based parallel programs with nominal user assistance. We categorize the different loop types and show how efficient directives can be placed using the toolkit's in-depth interprocedural analysis. Examples are taken from the NAS parallel benchmarks and a number of real-world application codes. This demonstrates the great potential of using the toolkit to quickly parallelise serial programs as well as the good performance achievable on up to 300 processors for hybrid message passing-directive parallelisations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generation of hardware architectures directly from dataflow representations is increasingly being considered as research moves toward system level design methodologies. Creation of networks of IP cores to implement actor functionality is a common approach to the problem, but often the memory sub-systems produced using these techniques are inefficiently utilised. This paper explores some of the issues in terms of memory organisation and accesses when developing systems from these high level representations. Using a template matching design study, challenges such as modelling memory reuse and minimising buffer requirements are examined, yielding results with significantly less memory requirements and costly off-chip memory accesses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MinneSPEC proposes reduced input sets that microprocessor designers can use to model representative short-running workloads. A four-step methodology verifies the program behavior similarity of these input sets to reference sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As ubiquitous computing becomes a reality, sensitive information is increasingly processed and transmitted by smart cards, mobile devices and various types of embedded systems. This has led to the requirement of a new class of lightweight cryptographic algorithm to ensure security in these resource constrained environments. The International Organization for Standardization (ISO) has recently standardised two low-cost block ciphers for this purpose, Clefia and Present. In this paper we provide the first comprehensive hardware architecture comparison between these ciphers, as well as a comparison with the current National Institute of Standards and Technology (NIST) standard, the Advanced Encryption Standard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mapping problem is inherent to digital musical instruments (DMIs), which require, at the very least, an association between physical gestures and digital synthesis algorithms to transform human bodily performance into sound. This article considers the DMI mapping problem in the context of the creation and performance of a heterogeneous computer chamber music piece, a trio for violin, biosensors, and computer. Our discussion situates the DMI mapping problem within the broader set of interdependent musical interaction issues that surfaced during the composition and rehearsal of the trio. Through descriptions of the development of the piece, development of the hardware and software interfaces, lessons learned through rehearsal, and self-reporting by the participants, the rich musical possibilities and technical challenges of the integration of digital musical instruments into computer chamber music are demonstrated.