991 resultados para wurtzite GaN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synergistic effect of compressive growth stresses and reactor chemistry, silane presence, on dislocation bending at the very early stages of GaN growth has been studied using in-situ stress measurements and cross-sectional transmission electron microscopy. A single 100 nm Si-doped GaN layer is found to be more effective than a 1 mu m linearly graded AlGaN buffer layer in reducing dislocation density and preventing the subsequent layer from transitioning to a tensile stress. 1 mu m crack-free GaN layers with a dislocation density of 7 x 10(8)/cm(2), with 0.13 nm surface roughness and no enhancement in n-type background are demonstrated over 2 inch substrates using this simple transition scheme. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report focuses on the structural and optical properties of the GaN films grown on p-Si (100) substrates along with photovoltaic characteristics of GaN/p-Si heterojunctions fabricated with substrate nitridation and in absence of substrate nitridation. The high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopic studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN epifilms grown with silicon nitride buffer layer when compared with the sample grown without silicon nitride buffer layer. The low temperature PL shows a free excitonic (FX) emission peak at 3.51 eV at the temperature of 5 K with a very narrow line width of 35 meV. Temperature dependent PL spectra follow the Varshni equation well and peak energy blue shifts by similar to 63 meV from 300 to 5 K. Raman data confirms the strain free nature and reasonably good crystallinity of the films. The GaN/p-Si heterojunctions fabricated without substrate nitridation show a superior photovoltaic performance compared to the devices fabricated in presence of substrate nitridation. The discussions have been carried out on the junction properties. Such single junction devices exhibit a promising fill factor and conversion efficiency of 23.36 and 0.12 %, respectively, under concentrated AM1.5 illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were carried on the growth behavior of InN nanodots by plasma assisted molecular beam epitaxy on bare Si(100) substrates and their structural, optical, electrical properties. The growth was carried out by two different methods such as, (i) mono-step growth process at a low temperature and a (ii) bi-step growth process with the combination of low and high temperatures for the formation of single crystalline nanodots with well defined crystallographic facets due to cluster migration. Low temperature photoluminescence shows a free excitonic (FE) luminescence at 0.80 eV. The Raman spectroscopy and X-ray diffraction studies reveal that the nanodots as well as the film were of wurtzite structure and strain free.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of nonpolar a- plane (1 1 -2 0) orientation of the GaN epilayers were confirmed by high resolution x-ray diffraction studies. An in-plane orientation relationship was found to be 0 0 0 1] GaN parallel to -1 1 0 1] sapphire and -1 1 0 0] GaN parallel to 1 1 -2 0] sapphire. SEM image shows the reasonably smooth surface. The photoluminescence spectrum shows near band emission (NBE) at 3.439 eV. The room temperature I-V characteristics of Au/a-GaN schottky diode performed. The Schottky barrier height (phi(b)) and the ideality factor (eta) for the Au/a-GaN schottky diode found to be 0.50 eV and 2.01 respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We hereby report the development of non-polar epi-GaN films of usable quality, on an m-plane sapphire. Generally, it is difficult to obtain high-quality nonpolar material due to the planar anisotropic nature of the growth mode. However, we could achieve good quality epi-GaN films by involving controlled steps of nitridation. GaN epilayers were grown on m-plane (10-10) sapphire substrates using plasma assisted molecular beam epitaxy. The films grown on the nitridated surface resulted in a nonpolar (10-10) orientation while without nitridation caused a semipolar (11-22) orientation. Room temperature photoluminescence study showed that nonpolar GaN films have higher value of compressive strain as compared to semipolar GaN films, which was further confirmed by room temperature Raman spectroscopy. The room temperature UV photodetection of both films was investigated by measuring the I-V characteristics under UV light illumination. UV photodetectors fabricated on nonpolar GaN showed better characteristics, including higher external quantum efficiency, compared to photodetectors fabricated on semipolar GaN. X-ray rocking curves confirmed better crystallinity of semipolar as compared to nonpolar GaN which resulted in faster transit response of the device. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN nanorods were grown by plasma assisted molecular beam epitaxy on intrinsic Si (111) substrates which were characterized by powder X-ray diffraction, field emission scanning electron microscopy, and photoluminescence. The current-voltage characteristics of the GaN nanorods on Si (111) heterojunction were obtained from 138 to 493K which showed the inverted rectification behavior. The I-V characteristics were analyzed in terms of thermionic emission model. The temperature variation of the apparent barrier height and ideality factor along with the non-linearity of the activation energy plot indicated the presence of lateral inhomogeneities in the barrier height. The observed two temperature regimes in Richardson's plot could be well explained by assuming two separate Gaussian distribution of the barrier heights. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phase InGaN was found to be similar to 2.48 eV: The current-voltage (I-V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log-log plot of the I-V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 x 10(9)/cm(2) and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600-1900 cm(2)/V s at a carrier concentration of 0.7-0.9 x 10(13)/cm(2). Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO2 (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO2/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO2/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma-assisted molecular beam epitaxy growth of (10-10) m-InN/(10-10) m-GaN was carried out on bare (10-10) m-sapphire substrate. The high resolution X-ray diffraction studies confirmed the orientation of the as-grown films. Nonpolar InN layer was grown at different growth temperatures ranging from 390 degrees C to 440 degrees C and the FWHM of rocking curve revealed good quality film at low temperatures. An in-plane relationship was established for the hetrostructures using phi-scan and a perfect alignment was found for the epilayers. Change of morphology of the films grown at different temperatures was observed using an atomic force microscopy technique showing the smoothest film grown at 400 degrees C. InN optical band gap was found to be vary from 0.79-0.83 eV from absorption spectra. The blue-shift of absorption edge was found to be induced by excess background electron concentration. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Buffer leakage is an important parasitic loss mechanism in AlGaN/GaN high electron mobility transistors (HEMTs) and hence various methods are employed to grow semi-insulating buffer layers. Quantification of carrier concentration in such buffers using conventional capacitance based profiling techniques is challenging due to their fully depleted nature even at zero bias voltages. We provide a simple and effective model to extract carrier concentrations in fully depleted GaN films using capacitance-voltage (C-V) measurements. Extensive mercury probe C-V profiling has been performed on GaN films of differing thicknesses and doping levels in order to validate this model. Carrier concentrations as extracted from both the conventional C-V technique for partially depleted films having the same doping concentration, and Hall measurements show excellent agreement with those predicted by the proposed model thus establishing the utility of this technique. This model can be readily extended to estimate background carrier concentrations from the depletion region capacitances of HEMT structures and fully depleted films of any class of semiconductor materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonpolar a-GaN (11-20) epilayers were grown on r-plane (1-102) sapphire substrates using plasma assisted molecular beam epitaxy. High resolution x-ray diffractometer confirmed the orientation of the grown film. Effect of the Ga/N ratio on the morphology and strain of a-GaN epilayers was compared and the best condition was obtained for the nitrogen flow of 1 sccm. Atomic force microscopy was used to analyze the surface morphology while the strain in the film was quantitatively measured using Raman spectroscopy and qualitatively analyzed by reciprocal space mapping technique. UV photo response of a-GaN film was measured after fabricating a metal-semiconductor-metal structure over the film with gold metal. The external quantum efficiency of the photodetectors fabricated in the (0002) polar and (11-20) nonpolar growth directions were compared in terms of responsivity and nonpolar GaN showed the best sensitivity at the cost of comparatively slow response time. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient buffer layer scheme has been designed to address the issue of curvature management during metalorganic chemical vapour deposition growth of GaN on Si (111) substrate. This is necessary to prevent cracking of the grown layer during post-growth cooling down from growth temperature to room temperature and to achieve an allowable bow (<40 m) in the wafer for carrying out lithographic processes. To meet both these ends simultaneously, the stress evolution in the buffer layers was observed carefully. The reduction in precursor flow during the buffer layer growth provided better control over curvature evolution in the growing buffer layers. This has enabled the growth of a suitable high electron mobility transistor (HEMT) stack on 2'' Si (111) substrate of 300 m thickness with a bow as low as 11.4 m, having a two-dimensional electron gas (2DEG) of mobility, carrier concentration, and sheet resistance values 1510 cm(2)/V-s, 0.96 x 10(13)/cm(2), and 444 /, respectively. Another variation of similar technique resulted in a bow of 23.4 m with 2DEG mobility, carrier concentration, and sheet resistance values 1960 cm(2)/V-s, 0.98 x 10(13)/cm(2), and 325 /, respectively.