999 resultados para weather observations
Resumo:
Ground-based remote-sensing observations from Atmospheric Radiation Measurement (ARM) and Cloud-Net sites are used to evaluate the clouds predicted by a weather forecasting and climate model. By evaluating the cloud predictions using separate measures for the errors in frequency of occurrence, amount when present, and timing, we provide a detailed assessment of the model performance, which is relevant to weather and climate time-scales. Importantly, this methodology will be of great use when attempting to develop a cloud parametrization scheme, as it provides a clearer picture of the current deficiencies in the predicted clouds. Using the Met Office Unified Model, it is shown that when cloud fractions produced by a diagnostic and a prognostic cloud scheme are compared, the prognostic cloud scheme shows improvements to the biases in frequency of occurrence of low, medium and high cloud and to the frequency distributions of cloud amount when cloud is present. The mean cloud profiles are generally improved, although it is shown that in some cases the diagnostic scheme produced misleadingly good mean profiles as a result of compensating errors in frequency of occurrence and amount when present. Some biases remain when using the prognostic scheme, notably the underprediction of mean ice cloud fraction due to the amount when present being too low, and the overprediction of mean liquid cloud fraction due to the frequency of occurrence being too high.
Resumo:
Large waves pose risks to ships, offshore structures, coastal infrastructure and ecosystems. This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. During the period 2000 to 2009, surface elevation was recorded every 0.59 s during sampling periods of 30 min. The Hmax observations scale linearly with Hs on average. A widely-used empirical Weibull distribution is found to estimate average values of Hmax/Hs and Hmax better than a Rayleigh distribution, but tends to underestimate both for all but the smallest waves. In this paper we propose a modified Rayleigh distribution which compensates for the heterogeneity of the observed dataset: the distribution is fitted to the whole dataset and improves the estimate of the largest waves. Over the 10-year period, the Weibull distribution approximates the observed Hs and Hmax well, and an exponential function can be used to predict the probability distribution function of the ratio Hmax/Hs. However, the Weibull distribution tends to underestimate the occurrence of extremely large values of Hs and Hmax. The persistence of Hs and Hmax in winter is also examined. Wave fields with Hs>12 m and Hmax>16 m do not last longer than 3 h. Low-to-moderate wave heights that persist for more than 12 h dominate the relationship of the wave field with the winter NAO index over 2000–2009. In contrast, the inter-annual variability of wave fields with Hs>5.5 m or Hmax>8.5 m and wave fields persisting over ~2.5 days is not associated with the winter NAO index.
Validation of a priori CME arrival predictions made using real-time heliospheric imager observations
Resumo:
Between December 2010 and March 2013, volunteers for the Solar Stormwatch (SSW) Citizen Science project have identified and analyzed coronal mass ejections (CMEs) in the near real-time Solar Terrestrial Relations Observatory Heliospheric Imager observations, in order to make “Fearless Forecasts” of CME arrival times and speeds at Earth. Of the 60 predictions of Earth-directed CMEs, 20 resulted in an identifiable Interplanetary CME (ICME) at Earth within 1.5–6 days, with an average error in predicted transit time of 22 h, and average transit time of 82.3 h. The average error in predicting arrival speed is 151 km s−1, with an average arrival speed of 425km s−1. In the same time period, there were 44 CMEs for which there are no corresponding SSW predictions, and there were 600 days on which there was neither a CME predicted nor observed. A number of metrics show that the SSW predictions do have useful forecast skill; however, there is still much room for improvement. We investigate potential improvements by using SSW inputs in three models of ICME propagation: two of constant acceleration and one of aerodynamic drag. We find that taking account of interplanetary acceleration can improve the average errors of transit time to 19 h and arrival speed to 77 km s−1.
Resumo:
4-Dimensional Variational Data Assimilation (4DVAR) assimilates observations through the minimisation of a least-squares objective function, which is constrained by the model flow. We refer to 4DVAR as strong-constraint 4DVAR (sc4DVAR) in this thesis as it assumes the model is perfect. Relaxing this assumption gives rise to weak-constraint 4DVAR (wc4DVAR), leading to a different minimisation problem with more degrees of freedom. We consider two wc4DVAR formulations in this thesis, the model error formulation and state estimation formulation. The 4DVAR objective function is traditionally solved using gradient-based iterative methods. The principle method used in Numerical Weather Prediction today is the Gauss-Newton approach. This method introduces a linearised `inner-loop' objective function, which upon convergence, updates the solution of the non-linear `outer-loop' objective function. This requires many evaluations of the objective function and its gradient, which emphasises the importance of the Hessian. The eigenvalues and eigenvectors of the Hessian provide insight into the degree of convexity of the objective function, while also indicating the difficulty one may encounter while iterative solving 4DVAR. The condition number of the Hessian is an appropriate measure for the sensitivity of the problem to input data. The condition number can also indicate the rate of convergence and solution accuracy of the minimisation algorithm. This thesis investigates the sensitivity of the solution process minimising both wc4DVAR objective functions to the internal assimilation parameters composing the problem. We gain insight into these sensitivities by bounding the condition number of the Hessians of both objective functions. We also precondition the model error objective function and show improved convergence. We show that both formulations' sensitivities are related to error variance balance, assimilation window length and correlation length-scales using the bounds. We further demonstrate this through numerical experiments on the condition number and data assimilation experiments using linear and non-linear chaotic toy models.
Resumo:
Previous versions of the Consortium for Small-scale Modelling (COSMO) numerical weather prediction model have used a constant sea-ice surface temperature, but observations show a high degree of variability on sub-daily timescales. To account for this, we have implemented a thermodynamic sea-ice module in COSMO and performed simulations at a resolution of 15 km and 5 km for the Laptev Sea area in April 2008. Temporal and spatial variability of surface and 2-m air temperature are verified by four automatic weather stations deployed along the edge of the western New Siberian polynya during the Transdrift XIII-2 expedition and by surface temperature charts derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. A remarkable agreement between the new model results and these observations demonstrates that the implemented sea-ice module can be applied for short-range simulations. Prescribing the polynya areas daily, our COSMO simulations provide a high-resolution and high-quality atmospheric data set for the Laptev Sea for the period 14-30 April 2008. Based on this data set, we derive a mean total sea-ice production rate of 0.53 km3/day for all Laptev Sea polynyas under the assumption that the polynyas are ice-free and a rate of 0.30 km3/day if a 10-cm-thin ice layer is assumed. Our results indicate that ice production in Laptev Sea polynyas has been overestimated in previous studies.
Resumo:
The sea ice export from the Arctic is of global importance due to its fresh water which influences the oceanic stratification and, thus, the global thermohaline circulation. This study deals with the effect of cyclones on sea ice and sea ice transport in particular on the basis of observations from two field experiments FRAMZY 1999 and FRAMZY 2002 in April 1999 and March 2002 as well as on the basis of simulations with a numerical sea ice model. The simulations realised by a dynamic-thermodynamic sea ice model are forced with 6-hourly atmospheric ECMWF- analyses (European Centre for Medium-Range Weather Forecasts) and 6-hourly oceanic data of a MPI-OM-simulation (Max-Planck-Institute Ocean Model). Comparing the observed and simulated variability of the sea ice drift and of the position of the ice edge shows that the chosen configuration of the model is appropriate for the performed studies. The seven observed cyclones change the position of the ice edge up to 100 km and cause an extensive decrease of sea ice coverage by 2 % up to more than 10 %. The decrease is only simulated by the model if the ocean current is strongly divergent in the centre of the cyclone. The impact is remarkable of the ocean current on divergence and shear deformation of the ice drift. As shown by sensitivity studies the ocean current at a depth of 6 m – the sea ice model is forced with – is mainly responsible for the ascertained differences between simulation and observation. The simulated sea ice transport shows a strong variability on a time scale from hours to days. Local minima occur in the time series of the ice transport during periods with Fram Strait cyclones. These minima are not caused by the local effect of the cyclone’s wind field, but mainly by the large-scale pattern of surface pressure. A displacement of the areas of strongest cyclone activity in the Nordic Seas would considerably influence the ice transport.
Resumo:
A new generation of high-resolution (1 km) forecast models promises to revolutionize the prediction of hazardous weather such as windstorms, flash floods, and poor air quality. To realize this promise, a dense observing network, focusing on the lower few kilometers of the atmosphere, is required to verify these new forecast models with the ultimate goal of assimilating the data. At present there are insufficient systematic observations of the vertical profiles of water vapor, temperature, wind, and aerosols; a major constraint is the absence of funding to install new networks. A recent research program financed by the European Union, tasked with addressing this lack of observations, demonstrated that the assimilation of observations from an existing wind profiler network reduces forecast errors, provided that the individual instruments are strategically located and properly maintained. Additionally, it identified three further existing European networks of instruments that are currently underexploited, but with minimal expense they could deliver quality-controlled data to national weather services in near–real time, so the data could be assimilated into forecast models. Specifically, 1) several hundred automatic lidars and ceilometers can provide backscatter profiles associated with aerosol and cloud properties and structures with 30-m vertical resolution every minute; 2) more than 20 Doppler lidars, a fairly new technology, can measure vertical and horizontal winds in the lower atmosphere with a vertical resolution of 30 m every 5 min; and 3) about 30 microwave profilers can estimate profiles of temperature and humidity in the lower few kilometers every 10 min. Examples of potential benefits from these instruments are presented.
Resumo:
Lack of access to insurance exacerbates the impact of climate variability on smallholder famers in Africa. Unlike traditional insurance, which compensates proven agricultural losses, weather index insurance (WII) pays out in the event that a weather index is breached. In principle, WII could be provided to farmers throughout Africa. There are two data-related hurdles to this. First, most farmers do not live close enough to a rain gauge with sufficiently long record of observations. Second, mismatches between weather indices and yield may expose farmers to uncompensated losses, and insurers to unfair payouts – a phenomenon known as basis risk. In essence, basis risk results from complexities in the progression from meteorological drought (rainfall deficit) to agricultural drought (low soil moisture). In this study, we use a land-surface model to describe the transition from meteorological to agricultural drought. We demonstrate that spatial and temporal aggregation of rainfall results in a clearer link with soil moisture, and hence a reduction in basis risk. We then use an advanced statistical method to show how optimal aggregation of satellite-based rainfall estimates can reduce basis risk, enabling remotely sensed data to be utilized robustly for WII.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The quality of temperature and humidity retrievals from the infrared SEVIRI sensors on the geostationary Meteosat Second Generation (MSG) satellites is assessed by means of a one dimensional variational algorithm. The study is performed with the aim of improving the spatial and temporal resolution of available observations to feed analysis systems designed for high resolution regional scale numerical weather prediction (NWP) models. The non-hydrostatic forecast model COSMO (COnsortium for Small scale MOdelling) in the ARPA-SIM operational configuration is used to provide background fields. Only clear sky observations over sea are processed. An optimised 1D–VAR set-up comprising of the two water vapour and the three window channels is selected. It maximises the reduction of errors in the model backgrounds while ensuring ease of operational implementation through accurate bias correction procedures and correct radiative transfer simulations. The 1D–VAR retrieval quality is firstly quantified in relative terms employing statistics to estimate the reduction in the background model errors. Additionally the absolute retrieval accuracy is assessed comparing the analysis with independent radiosonde and satellite observations. The inclusion of satellite data brings a substantial reduction in the warm and dry biases present in the forecast model. Moreover it is shown that the retrieval profiles generated by the 1D–VAR are well correlated with the radiosonde measurements. Subsequently the 1D–VAR technique is applied to two three–dimensional case–studies: a false alarm case–study occurred in Friuli–Venezia–Giulia on the 8th of July 2004 and a heavy precipitation case occurred in Emilia–Romagna region between 9th and 12th of April 2005. The impact of satellite data for these two events is evaluated in terms of increments in the integrated water vapour and saturation water vapour over the column, in the 2 meters temperature and specific humidity and in the surface temperature. To improve the 1D–VAR technique a method to calculate flow–dependent model error covariance matrices is also assessed. The approach employs members from an ensemble forecast system generated by perturbing physical parameterisation schemes inside the model. The improved set–up applied to the case of 8th of July 2004 shows a substantial neutral impact.
Resumo:
Meteorological or climatological extremes are rare and hence studying them requires long meteorological data sets. Moreover, for addressing the underlying atmospheric processes, detailed three-dimensional data are desired. Until recently the two requirements were incompatible as long meteorological series were only available for a few locations, whereas detailed 3-dimensional data sets such as reanalyses were limited to the past few decades. In 2011, the “Twentieth Century Reanalysis” (20CR) was released, a 6-hourly global atmospheric data set covering the past 140 years, thus combining the two properties. The collection of short papers in this volume contains case studies of individual extreme events in the 20CR data set. In this overview paper we introduce the first six cases and summarise some common findings. All of the events are represented in 20CR in a physically consistent way, allowing further meteorological interpretations and process studies. Also, for most of the events, the magnitudes are underestimated in the ensemble mean. Possible causes are addressed. For interpreting extrema it may be necessary to address individual ensemble members. Also, the density of observations underlying 20CR should be considered. Finally, we point to problems in wind speeds over the Arctic and the northern North Pacific in 20CR prior to the 1950s.
Resumo:
In the first decades of the 20th century, aerological observations were for the first time performed in tropical regions. One of the most prominent endeavours in this respect was ARTHUR BERSON’s aerological expedition to East Africa. Although the main target was the East African monsoon circulation, the expedition provided also other insights that profoundly changed meteorology and climatology. BERSON observed that the tropical tropopause was much higher and colder than that over midlatitudes. Moreover, westerly winds were observed in the lower stratosphere, apparently contradicting the high-altitude equatorial easterly winds that were known since the Krakatoa eruption (‘‘Krakatoa easterlies’’). The puzzle was only resolved five decades later with the discovery of the Quasi-Biennial Oscillation (QBO). In this paper we briefly summarize the expedition of BERSON and review the results in a historical context and in the light of the current research. In the second part of the paper we re-visit BERSON’s early aerological observations, which we have digitized. We compare the observed wind profiles with corresponding profiles extracted from the ‘‘Twentieth Century Reanalysis’’, which provides global three-dimensional weather information back to 1871 based on an assimilation of sea-level and surface pressure data. The comparison shows a good agreement at the coast but less good agreement further inland, at the shore of Lake Victoria, where the circulation is more complex. These results demonstrate that BERSON’s observations are still valuable today as input to current reanalysis systems or for their validation.
Resumo:
High-resolution, ground-based and independent observations including co-located wind radiometer, lidar stations, and infrasound instruments are used to evaluate the accuracy of general circulation models and data-constrained assimilation systems in the middle atmosphere at northern hemisphere midlatitudes. Systematic comparisons between observations, the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses including the recent Integrated Forecast System cycles 38r1 and 38r2, the NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalyses, and the free-running climate Max Planck Institute–Earth System Model–Low Resolution (MPI-ESM-LR) are carried out in both temporal and spectral dom ains. We find that ECMWF and MERRA are broadly consistent with lidar and wind radiometer measurements up to ~40 km. For both temperature and horizontal wind components, deviations increase with altitude as the assimilated observations become sparser. Between 40 and 60 km altitude, the standard deviation of the mean difference exceeds 5 K for the temperature and 20 m/s for the zonal wind. The largest deviations are observed in winter when the variability from large-scale planetary waves dominates. Between lidar data and MPI-ESM-LR, there is an overall agreement in spectral amplitude down to 15–20 days. At shorter time scales, the variability is lacking in the model by ~10 dB. Infrasound observations indicate a general good agreement with ECWMF wind and temperature products. As such, this study demonstrates the potential of the infrastructure of the Atmospheric Dynamics Research Infrastructure in Europe project that integrates various measurements and provides a quantitative understanding of stratosphere-troposphere dynamical coupling for numerical weather prediction applications.