945 resultados para water quality index
Resumo:
Summary of stream water quality data collected from 2000 through 2014.
Resumo:
Prior to European settlement, wetland basins covered 4 to 6 million acres, or approximately 11% of Iowa's surface area. Wetlands were part of every watershed in the state, but nearly 95% of them have been drained for agriculture. As Iowa was settled wetlands were drained and developed, resulting in the loss of wildlife habitat, damage to water quality, rapid topsoil erosion, and increased incidents and severity of flooding. The condition of Iowa’s remaining wetlands is poorly known. The goal of this project was to assess the ecological condition of prairie pothole wetlands in a defined region of north-central Iowa. This project has worked to develop and establish our wetland sampling methods, while providing baseline data regarding the basic chemical, physical, and biological status of Iowa’s permanent and semi-permanent wetland resources. The baseline data obtained from our monitoring methods is mainly in the form of numerical values derived from the lab analyses of our samples. This data will be used to begin building a database to interpret ecological condition changes in Iowa’s wetlands as the sampling regime and assessment methodology are repeated over time.
Resumo:
Summary of lake water quality data collected in 2014 as part of the Iowa DNR's lake monitoring program.
Resumo:
Summary of lake water quality data collected from 2000 through 2014 for lakes statewide monitored as part of the Iowa DNR's lake monitoring program.
Resumo:
1. The implementation of the Water Framework Directive requires EU member states to establish and harmonize ecological status class boundaries for biological quality elements. In this paper, we describe an approach for defining ecological class boundaries that delineates shifts in lake ecosystem functioning and, therefore, provides ecologically meaningful targets for water policy in Europe. 2. We collected an extensive data set of 810 lake-years from nine Central European countries, and we used phytoplankton chlorophyll a, a metric widely used to measure the impact of eutrophication in lakes. Our approach establishes chlorophyll a target values in relation to three significant ecological effects of eutrophication: the decline of aquatic macrophytes, the dominance of potentially harmful cyanobacteria and the major functional switch from a clear water to a turbid state. 3. Ranges of threshold chlorophyll a concentrations are given for the two most common lake types in lowland Central Europe: for moderately deep lakes (mean depth 3–15 m), the greatest ecological shifts occur in the range 10–12 lg L 1 chlorophyll a, and for shallow lakes (<3 m mean depth), in the range 21–23 lg L 1 chlorophyll a. 4. Synthesis and applications. Our study provides class boundaries for determining the ecological status of lakes, which have robust ecological consequences for lake functioning and which, therefore, provide strong and objective targets for sustainable water management in Europe. The results have been endorsed by all participant member states and adopted in the European Commission legislation, marking the first attempt in international water policy to move from physico-chemical quality standards to harmonized ecologically based quality targets.
Resumo:
Se estudian las comunidades de macroinvertebrados de los ríos del Parque Natural de Sant Llorenç del Munt i la Serra de l'Obac (Barcelona, NE España) y su relación con las condiciones de flujo de los ríos. Hasta 78 localidades se visitaron en dos ocasiones (invierno y verano de 1996) y en 26 de ellas se tomaron muestras de macroinvertebrados. Mientras en invierno el 63 % de los kilÛmetros investigados tenía flujo continuo y menos del 1% estaba seco, en verano solo el 26% tenía flujo continuo, un 20% estaba totalmente seco y el resto presentaba pozas en su lecho. A pesar de ello el número de familias de macroinvertebrados fue de 54 en invierno y 94 en verano, siendo dominantes en este último caso los heterópteros, coleópteros, odonatos y dípteros, mientras que en invierno los tricópteros y plecópteros eran más diversos. En general, la comunidad presentó una estrategia trófica recolectora aunque la proporción de los ramoneadores y depredadores aumentó en verano. El estudio de las comunidades mediante el análisis de su abundancia en los dos perÌodos, mostró que las variables temporales (flujo, temperatura) o las relacionadas con el incremento de la producciÛn primaria (oxÌgeno, pH) explicaban la mayor parte de la variabilidad con los elementos mas reófilos propios de invierno y los leníticos de verano, mientras que otros factores fisicoquímicos no eran relevantes. Calculado el índice biológico BMWP' se demostró que los valores en verano eran superiores o similares a los de invierno lo que se explica por la mayor diversidad aunque la calificaciÛn individual de cada una de las familias encontradas en verano fuera menor que las halladas en invierno.
Resumo:
The aim of this study was to identify, by multivariate statistical technique, the physic, chemical and biological variables that best characterize the quality of surface waters in two small rural catchments with different land uses (eucalyptus silviculture (SC) vs. pasture and extensive livestock (LC)) located in Rosário do Sul, RS - Brazil. Monitoring was conducted during the months of August 2011 to August 2012 and the following parameters were analyzed: Ca2+, Mg2+, K+, SO42-, Cl-, pH, electrical conductivity, turbidity, alkalinity, suspended and dissolved solids, biochemical oxygen demand , total coliforms, Escherichia coli and temperature, flow and rainfall. Through the use of FA/PCA, it was found that the model best fit to express water quality of in LC that was composed of five factors which account for 83.5% of the total variance, while for SC, four factors accounted for 85.12% of the variance. In LC, the five main factors were, respectively, soluble salts, diffuse pollution, solid, and both anthropogenic and organic factors. In SC, the four factors were namely: soluble salts, mineral, nutritional and diffuse pollution factors. The results of this study showed that by replacing the traditional soil usage (pasture and livestock) with planted forest, diffuse pollution was attenuated but, however, it did not result in major changes in the physical-chemical and biological characteristics of the water. Another point to note is that factorial analysis did not result in a large reduction in the number of variables, once the best model fit occurred with the addition of 15 of 18 analyzed variables (LC) and 17 of 18 analyzed variables (SC).
Resumo:
The aim of this study was to evaluate the application possibility of tabular CUSUM control charts in the quality control of chemical variables in surface water. It was performed bibliographic and field research to collect water samples from 2003 to 2009, totaling 30 samples, some monthly and others semi-annual in order to observe the variables that regulate water quality. It was found that these charts may be applied to control the quality of river water; showing to be effective in the perception of changes during the process, especially for small samples (n=1) which there is no repetition as in this research. It was also concluded that the Mandurim River does not presents significant levels of pollution.
Resumo:
In order to verify the influence of class and use and occupation of land on water quality, it was performed the characterization and analyzes of land use and monitoring of seven springs inserted in a watershed located in the rural of Viçosa city - Minas Gerais (MG) state, in Brazil. Through soil analyzes, carried out in five different profiles, it was possible to identify three distinct pedological classes: Argisol, Cambisol and Latosol. Furthermore, the concentrations of Fe, Mn, Cu, Zn, Cr, Cd, Pb and Ni were identified in each of the horizons in the considered profiles. Water samples were collected and analyzed monthly, over eight months, twenty two parameters of water quality. Comparing the results of each survey, it was possible to identify a relation between water quality and land use in the round of the springs, considering color, BOD, DO, E. coli and Mn as the most affected parameters, influenced mainly by soil characteristics and the presence of a large percentage of pasture in the study area.
Resumo:
The objective of this study consisted on mapping the use and soil occupation and evaluation of the quality of irrigation water used in Salto do Lontra, in the state of Paraná, Brazil. Images of the satellite SPOT-5 were used to perform the supervised classification of the Maximum Likelihood algorithm - MAXVER, and the water quality parameters analyzed were pH, EC, HCO3-, Cl-, PO4(3-), NO3-, turbidity, temperature and thermotolerant coliforms in two distinct rainfall periods. The water quality data were subjected to statistical analysis by the techniques of PCA and FA, to identify the most relevant variables in assessing the quality of irrigation water. The characterization of soil use and occupation by the classifier MAXVER allowed the identification of the following classes: crops, bare soil/stubble, forests and urban area. The PCA technique applied to irrigation water quality data explained 53.27% of the variation in water quality among the sampled points. Nitrate, thermotolerant coliforms, temperature, electrical conductivity and bicarbonate were the parameters that best explained the spatial variation of water quality.
Resumo:
The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation, and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the Programme when assessing the effects of the emissions from the Pechenganikel mining and metallurgical industry (Kola GMK). The Metallurgic Production Renovation Programme was implemented by OJSC Kola GMK to reduce emissions of sulphur and heavy metal concentrated dust. However, the expectations for the reduction in emissions from the smelter in the settlement Nikel were not realized. Nevertheless, Kola GMK has found that the modernization programme’s measures do not provide the planned reductions of sulfur dioxide emissions. In this report, temporal trends in water chemistry during 2000–2009 are examined on the basis of the data gathered from Lake Inari, River Pasvik and directly connected lakes, as well as from 26 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse, and the small lakes and streams which are not directly linked to the Pasvik watercourse, only receive atmospheric pollution. The data obtained confirms the ongoing pollution of the river and water system. Copper (Cu), nickel (Ni) and sulphates are the main pollution components. The highest levels were observed close to the smelters. The most polluted water source of the basin is the River Kolosjoki, as it directly receives the sewage discharge from the smelters and the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentrations of metals and sulphates in the River Pasvik are higher downstream from the Kuetsjarvi Lake. There has been no fall in the concentrations of pollutants in Pasvik watercourse over the last 10 years. Ongoing recovery from acidification has been evident in the small lakes of the Jarfjord and Vätsäri areas during the 2000s. The buffering capacity of these lakes has improved and the pH has increased. The reason for this recovery is that sulphate deposition has decreased, which is also evident in the water quality. However, concentrations of some metals, especially Ni and Cu, have risen during the 2000s. Ni concentrations have increased in all three areas, and Cu concentrations in the Pechenganickel and Jarfjord areas, which are located closer to the smelters. Emission levels of Ni and Cu did not fall during 2000s. In fact, the emission levels of Ni compounds even increased compared to the 1990s.
Resumo:
The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the programme when assessing the effects of the emissions from the Pechenganikel mining end metallurgical industry (Kola GMK). In this report temporal trends of the water chemistry during 2000–2013 are examined on the basis of the data gathered from lake Inari, River Pasvik and directly connected lakes, Lake Kuetsjarvi and 25 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse and the small lakes and streams which are not directly linked to the Pasvik Watercourse only receive atmospheric pollution. Lake Inari is free of direct emissions from the Pechenganikel and the water quality is excellent. In River Pasvik and the directly connected lakes copper, nickel, and sulphates are the main pollutants. The most polluted water body is the Kolosjoki River as well as the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentration of metals and sulphates in the water notably increases downstream the river lower Lake Kuetsjarvi. In Lake Kuetsjarvi copper and nickel concentrations are clearly elevated and have changed insignificantly in the last years of the research period. In the small border area lakes recovery from acidification in Vätsäri and Jarfjord is evident. Nickel and copper oncentrations have fluctuated but remained on clearly elevated level in Jarfjord and Pechenga. Copper concentrations have been slightly rising in the recent years. In Pechenga area nickel concentrations during the last four monitoring years are decreasing in some places but the regional trend through whole time series is still positive.
Resumo:
Environmental threats are growing nowadays, they became global issues. People around the world try to face these issues by two means: solving the current affected environs and preventing non-affected environs. This thesis describes the design, implementation, and evaluation of online water quality monitoring system in Lake Saimaa, Finland. The water quality in Lake Saimaa needs to be monitored in order to provide responsible bodies with valuable information which allows them to act fast in order to prevent any negative impact on the lake's environment. The objectives were to design a suitable system, implement the system in Lake Saimaa, and then to evaluate the applicability and reliability of such systems for this environment. The needs for the system were first isolated, and then the design, needed modifications, and the construction of the system took place. After that was the testing of the system in Lake Saimaa in two locations nearby Mikkeli city. The last step was to evaluate the whole system. The main results were that the application of online water quality monitoring systems in Lake Saimaa can benefit of many advantages such as reducing the required manpower, time and running costs. However, the point of unreliability of the exact measured values of some parameters is still the drawback of such systems which can be developed by using more advanced equipments with more sophisticated features specifically for the purpose of monitoring in the predefined location.
Resumo:
Water geochemistry is a very important tool for studying the water quality in a given area. Geology and climate are the major natural factors controlling the chemistry of most natural waters. Anthropogenic impacts are the secondary sources of contamination in natural waters. This study presents the first integrative approach to the geochemistry and water quality of surface waters and Lake Qarun in the Fayoum catchment, Egypt. Moreover, geochemical modeling of Lake Qarun was firstly presented. The Nile River is the main source of water to the Fayoum watershed. To investigate the quality and geochemistry of this water, water samples from irrigation canals, drains and Lake Qarun were collected during the period 2010‒2013 from the whole Fayoum drainage basin to address the major processes and factors governing the evolution of water chemistry in the investigation area. About 34 physicochemical quality parameters, including major ions, oxygen isotopes, trace elements, nutrients and microbiological parameters were investigated in the water samples. Multivariable statistical analysis was used to interpret the interrelationship between the different studied parameters. Geochemical modeling of Lake Qarun was carried out using Hardie and Eugster’s evolutionary model and a model simulated by PHREEQC software. The crystallization sequence during evaporation of Lake Qarun brine was also studied using a Jänecke phase diagram involving the system Na‒K‒Mg‒ Cl‒SO4‒H2O. The results show that the chemistry of surface water in the Fayoum catchment evolves from Ca- Mg-HCO3 at the head waters to Ca‒Mg‒Cl‒SO4 and eventually to Na‒Cl downstream and at Lake Qarun. The main processes behind the high levels of Na, SO4 and Cl in downstream waters and in Lake Qarun are dissolution of evaporites from Fayoum soils followed by evapoconcentration. This was confirmed by binary plots between the different ions, Piper plot, Gibb’s plot and δ18O results. The modeled data proved that Lake Qarun brine evolves from drainage waters via an evaporation‒crystallization process. Through the precipitation of calcite and gypsum, the solution should reach the final composition "Na–Mg–SO4–Cl". As simulated by PHREEQC, further evaporation of lake brine can drive halite to precipitate in the final stages of evaporation. Significantly, the crystallization sequence during evaporation of the lake brine at the concentration ponds of the Egyptian Salts and Minerals Company (EMISAL) reflected the findings from both Hardie and Eugster’s evolutionary model and the PHREEQC simulated model. After crystallization of halite at the EMISAL ponds, the crystallization sequence during evaporation of the residual brine (bittern) was investigated using a Jänecke phase diagram at 35 °C. This diagram was more useful than PHREEQC for predicting the evaporation path especially in the case of this highly concentrated brine (bittern). The predicted crystallization path using a Jänecke phase diagram at 35 °C showed that halite, hexahydrite, kainite and kieserite should appear during bittern evaporation. Yet the actual crystallized mineral salts were only halite and hexahydrite. The absence of kainite was due to its metastability while the absence of kieserite was due to opposed relative humidity. The presence of a specific MgSO4.nH2O phase in ancient evaporite deposits can be used as a paleoclimatic indicator. Evaluation of surface water quality for agricultural purposes shows that some irrigation waters and all drainage waters have high salinities and therefore cannot be used for irrigation. Waters from irrigation canals used as a drinking water supply show higher concentrations of Al and suffer from high levels of total coliform (TC), fecal coliform (FC) and fecal streptococcus (FS). These waters cannot be used for drinking or agricultural purposes without treatment, because of their high health risk. Therefore it is crucial that environmental protection agencies and the media increase public awareness of this issue, especially in rural areas.
Resumo:
The water quality and fish populations of the Welland River were observed to decline with distance downstream. This coincided with increased agricultural , domestic and industrial waste loadings. The river upstream of the City of Welland received considerable loadings from agricultural sources. Centrarchids, sciaenids, ictalurids, cyprinids and esocids characterized this upper section of the river. Most of these species were tolerant of low dissolved oxygen concentrations and the high turbidity which prevailed there . The river near Port Robinson receives many industrial and domestic wastes as evidenced by the water quality data. The fish in this section were less abundant and the observed population was comprised almost solely of cyprinids. Further downstream, near Montrose, the Welland River received shock loads of chemical wastes that exceeded a specific conductance of ISiOOO ;umhos/cm. Few fish were captured at this site and those that were captured were considered to be transients. A review of the literature revealed that none of the common indices of water quality in use today could adequately predict the observed distributions. In addition to the above, the long-term trend (l3 yrs) of water quality of the lower Welland River revealed a gradual improvement. The major factor thought to be responsible for this improvement was the operation of the Welland Sewage Treatment Plant. The construction of the New Welland Ship Canal coincided with large fluctuations of the total solids and other parameters downstream. These conditions prevailed for a maximum of three years (1972- 1975)' Furthermore, spawning times and temperatures, geographic distributions, length-weight regressions and many other descriptive aspects of the ecology of some 26 species/ taxa of fish were obtained. Several of these species are rare or new to southern Ontario.