918 resultados para two-point selection
Resumo:
The concepts of void and cluster for an arbitrary point distribution in a domain D are defined and characterized by some parameters such as volume, density, number of points belonging to them, shape, etc. After assigning a weight to each void and clusterwhich is a function of its characteristicsthe concept of distance between two point configurations S1 and S2 in D is introduced, both with and without the help of a lattice in the domain D. This defines a topology for the point distributions in D, which is different for the different characterizations of the voids and clusters.
Resumo:
The semiclassical Einstein-Langevin equations which describe the dynamics of stochastic perturbations of the metric induced by quantum stress-energy fluctuations of matter fields in a given state are considered on the background of the ground state of semiclassical gravity, namely, Minkowski spacetime and a scalar field in its vacuum state. The relevant equations are explicitly derived for massless and massive fields arbitrarily coupled to the curvature. In doing so, some semiclassical results, such as the expectation value of the stress-energy tensor to linear order in the metric perturbations and particle creation effects, are obtained. We then solve the equations and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. In the conformal field case, explicit results are obtained. These results hint that gravitational fluctuations in stochastic semiclassical gravity have a non-perturbative behavior in some characteristic correlation lengths.
Resumo:
We propose a criterion for the validity of semiclassical gravity (SCG) which is based on the stability of the solutions of SCG with respect to quantum metric fluctuations. We pay special attention to the two-point quantum correlation functions for the metric perturbations, which contain both intrinsic and induced fluctuations. These fluctuations can be described by the Einstein-Langevin equation obtained in the framework of stochastic gravity. Specifically, the Einstein-Langevin equation yields stochastic correlation functions for the metric perturbations which agree, to leading order in the large N limit, with the quantum correlation functions of the theory of gravity interacting with N matter fields. The homogeneous solutions of the Einstein-Langevin equation are equivalent to the solutions of the perturbed semiclassical equation, which describe the evolution of the expectation value of the quantum metric perturbations. The information on the intrinsic fluctuations, which are connected to the initial fluctuations of the metric perturbations, can also be retrieved entirely from the homogeneous solutions. However, the induced metric fluctuations proportional to the noise kernel can only be obtained from the Einstein-Langevin equation (the inhomogeneous term). These equations exhibit runaway solutions with exponential instabilities. A detailed discussion about different methods to deal with these instabilities is given. We illustrate our criterion by showing explicitly that flat space is stable and a description based on SCG is a valid approximation in that case.
Resumo:
A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the neighborhood of each point then defines in a natural way a local concept of dimension. We study our model in the region of parameter space in which the resulting spacetime is not too different from a smooth manifold.
Resumo:
We develop a general theory for percolation in directed random networks with arbitrary two-point correlations and bidirectional edgesthat is, edges pointing in both directions simultaneously. These two ingredients alter the previously known scenario and open new views and perspectives on percolation phenomena. Equations for the percolation threshold and the sizes of the giant components are derived in the most general case. We also present simulation results for a particular example of uncorrelated network with bidirectional edges confirming the theoretical predictions.
Resumo:
A family history of coronary artery disease (CAD), especially when the disease occurs at a young age, is a potent risk factor for CAD. DNA collection in families in which two or more siblings are affected at an early age allows identification of genetic factors for CAD by linkage analysis. We performed a genomewide scan in 1,168 individuals from 438 families, including 493 affected sibling pairs with documented onset of CAD before 51 years of age in men and before 56 years of age in women. We prospectively defined three phenotypic subsets of families: (1) acute coronary syndrome in two or more siblings; (2) absence of type 2 diabetes in all affected siblings; and (3) atherogenic dyslipidemia in any one sibling. Genotypes were analyzed for 395 microsatellite markers. Regions were defined as providing evidence for linkage if they provided parametric two-point LOD scores >1.5, together with nonparametric multipoint LOD scores >1.0. Regions on chromosomes 3q13 (multipoint LOD = 3.3; empirical P value <.001) and 5q31 (multipoint LOD = 1.4; empirical P value <.081) met these criteria in the entire data set, and regions on chromosomes 1q25, 3q13, 7p14, and 19p13 met these criteria in one or more of the subsets. Two regions, 3q13 and 1q25, met the criteria for genomewide significance. We have identified a region on chromosome 3q13 that is linked to early-onset CAD, as well as additional regions of interest that will require further analysis. These data provide initial areas of the human genome where further investigation may reveal susceptibility genes for early-onset CAD.
Resumo:
METHODS: We examined 20 patients from 2 unrelated Swiss families to describe their clinical phenotype. In addition, a linkage analysis was performed in an attempt to confirm the reported genetic homogeneity of this condition as well as to refine its genomic localization. RESULTS: Two point analysis provided a cumulative LOD-score of 3.03 with marker D3S 2305. The absence of recombination precluded further refinement of the disease interval. CONCLUSIONS: Our data confirm the genetic homogeneity and the extreme variability of expression, occasionally mimicking low tension glaucoma.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
The Tuttle Lake Watershed is approximately 125,000 acres and Tuttle Lake itself is 2,270 acres; 5,609 acres of the watershed lies in Iowa territory within Emmet County. It is a sub-watershed of the larger East Fork Des Moines River Watershed, also referred to as Hydrologic Unit Code 07100003. For the purpose of this document, grant money is only being applied for the project implementation in the Iowa portion of the Tuttle Lake Watershed. Tuttle Lake was placed on the 2002 EPA 303(d) Impaired Waters List due to a “very large population of suspended algae and very high levels of inorganic turbidity.” In 2004, the Iowa Department of Natural Resources (IDNR) completed a Total Maximum Daily Load (TMDL) study on Tuttle Lake and found excess sediment and phosphorus levels being the primary pollutants causing the algae and turbidity impairment. Although two point sources were located in Minnesota, IDNR determined that the influx of nutrients is likely from agricultural runoff and re-suspension of lake sediment. The condition of Tuttle Lake is such that the reduction of sediment, nutrients [phosphorus and nitrogen] and pathogens is the primary objective. To achieve that objective, wetlands will be constructed in this first phase to reduce the delivery of nitrogen, phosphorus, and sediment to Tuttle Lake.
Resumo:
We study the gravitational dual of a high-energy collision in a confining gauge theory. We consider a linearized approach in which two point particles traveling in an AdS-soliton background suddenly collide to form an object at rest (presumably a black hole for large enough center-of-mass energies). The resulting radiation exhibits the features expected in a theory with a mass gap: late-time power law tails of the form t −3/2, the failure of Huygens" principle and distortion of the wave pattern as it propagates. The energy spectrum is exponentially suppressed for frequencies smaller than the gauge theory mass gap. Consequently, we observe no memory effect in the gravitational waveforms. At larger frequencies the spectrum has an upward-stairway structure, which corresponds to the excitation of the tower of massive states in the confining gauge theory. We discuss the importance of phenomenological cutoffs to regularize the divergent spectrum, and the aspects of the full non-linear collision that are expected to be captured by our approach.
Resumo:
Työssä tutkittiin sulfonoitujen polystyreenidivinyylibentseenirunkoisten geeli-, meso- ja makrohuokoistenioninvaihtohartsien rakennetta käyttäen useita eri karakterisointimenetelmiä. Lisäksi työssä tutkittiin hartsien huokoskoon vaikutusta aminohappojen kromatografisessa erotuksessa. Työn pääpaino oli hartsien huokoskoon ja huokoisuuden määrittämisessä. Sen selvittämiseksi käytettiin hyväksi elektronimikroskopiaa, typpiadsorptiomittauksia, sekä käänteistä kokoekskluusiokromatografiaa. Parhaat tulokset saatiin käänteisellä kokoekskluusiokromatografialla, joka perustuu erikokoisten dekstraanipolymeerien käyttöön mallimolekyyleinä. Menetelmä sopii meso- ja makrohuokoisuuden tutkimiseen, mutta sen heikkoutena on erittäin pitkä mittausaika. Menetelmä antaa myös huokoskokojakauman, mutta yhden hartsin mittaaminen voi kestää viikon. Menetelmää muutettiin siten, että käytettiin määritettävää huokoskokoaluetta kuvaavien kahden dekstraanipolymeerin seosta. Kromatografiset ajo-olosuhteet optimoitiin sellaisiksi, että injektoidussa seoksessa olevien dekstraanien vastehuiput erottuivat toisistaan. Tällöin voitiin luotettavasti määrittää tutkittavan stationaarifaasin suhteellinen huokoisuus. Tätä työssä kehitettyä nopeaa käänteiseen kokoekskluusiokromatografiaan perustuvaa menetelmää kutsutaan kaksipistemenetelmäksi. Hartsien sulfonihapporyhmien määrää ja jakautumista tutkittiin määrittämällä hartsien kationinvaihtokapasiteetti sekä tutkimalla hartsin pintaa konfokaali-Raman-spektroskopian avulla. Sulfonihapporyhmien ioninvaihtokyvyn selvittämiseksi mitattiin K+-muotoon muutetusta hartsista S/K-suhde poikkileikkauspinnasta. Tulosten perusteella hartsit olivat tasaisesti sulfonoituneet ja 95 % rikkiatomeista oli toimivassa ioninvaihtoryhmässä. Aminohappojen erotuksessa malliaineina oli lysiini, seriini ja tryptofaani. Hartsi oli NH4+-muodossa ja petitilavuus oli 91 mL. Eluenttina käytettiin vettä, jonka pH oli 10. Paras tulos saatiin virtausnopeudella 0,1 mL/min, jolla kaikki kolme aminohappoa erottuivat toisistaan Finex Oy:n mesohuokoisella KEF78-hartsilla. Muilla tutkituilla hartseilla kaikki kolme aminohappoa eivät missään ajo-olosuhteissa erottuneet täysin.
Resumo:
The main goal of this paper is to propose a convergent finite volume method for a reactionâeuro"diffusion system with cross-diffusion. First, we sketch an existence proof for a class of cross-diffusion systems. Then the standard two-point finite volume fluxes are used in combination with a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges to the corresponding weak solution for the studied model. Furthermore, we provide a stability analysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that experimental rates of convergence are slightly below second order. The convergence proof uses two ingredients of interest for various applications, namely the discrete Sobolev embedding inequalities with general boundary conditions and a space-time $L^1$ compactness argument that mimics the compactness lemma due to Kruzhkov. The proofs of these results are given in the Appendix.
Resumo:
This thesis studies gray-level distance transforms, particularly the Distance Transform on Curved Space (DTOCS). The transform is produced by calculating distances on a gray-level surface. The DTOCS is improved by definingmore accurate local distances, and developing a faster transformation algorithm. The Optimal DTOCS enhances the locally Euclidean Weighted DTOCS (WDTOCS) with local distance coefficients, which minimize the maximum error from the Euclideandistance in the image plane, and produce more accurate global distance values.Convergence properties of the traditional mask operation, or sequential localtransformation, and the ordered propagation approach are analyzed, and compared to the new efficient priority pixel queue algorithm. The Route DTOCS algorithmdeveloped in this work can be used to find and visualize shortest routes between two points, or two point sets, along a varying height surface. In a digital image, there can be several paths sharing the same minimal length, and the Route DTOCS visualizes them all. A single optimal path can be extracted from the route set using a simple backtracking algorithm. A new extension of the priority pixel queue algorithm produces the nearest neighbor transform, or Voronoi or Dirichlet tessellation, simultaneously with the distance map. The transformation divides the image into regions so that each pixel belongs to the region surrounding the reference point, which is nearest according to the distance definition used. Applications and application ideas for the DTOCS and its extensions are presented, including obstacle avoidance, image compression and surface roughness evaluation.
Resumo:
Electrical impedance tomography (EIT) is a non-invasive imaging technique that can measure cardiac-related intra-thoracic impedance changes. EIT-based cardiac output estimation relies on the assumption that the amplitude of the impedance change in the ventricular region is representative of stroke volume (SV). However, other factors such as heart motion can significantly affect this ventricular impedance change. In the present case study, a magnetic resonance imaging-based dynamic bio-impedance model fitting the morphology of a single male subject was built. Simulations were performed to evaluate the contribution of heart motion and its influence on EIT-based SV estimation. Myocardial deformation was found to be the main contributor to the ventricular impedance change (56%). However, motion-induced impedance changes showed a strong correlation (r = 0.978) with left ventricular volume. We explained this by the quasi-incompressibility of blood and myocardium. As a result, EIT achieved excellent accuracy in estimating a wide range of simulated SV values (error distribution of 0.57 ± 2.19 ml (1.02 ± 2.62%) and correlation of r = 0.996 after a two-point calibration was applied to convert impedance values to millilitres). As the model was based on one single subject, the strong correlation found between motion-induced changes and ventricular volume remains to be verified in larger datasets.
Resumo:
Tämän diplomityön tarkoitus on tuoda esiin öljy- ja hartsieristeisten muuntajien käytön tekniset, ympäristölliset ja taloudelliset erot. Vertailuun on otettu nämä kaksi vaihtoehtoa, koska ne ovat yleisimmin Suomessa käytetyt. Suurin osa jakelumuuntajista Suomessa on öljyeristeisiä, siksi tämän työn esimerkeiksi on otettu projektit, joissa käytettiin hartsimuuntajaa. Työn alkuosa koostuu muuntajien teknisten erojen selvittämisestä sekä ulko- että sisäkäytössä. Toinen osa käsittelee ympäristönkuormitusta ja kolmas osa sitä, kuinka jakelumuuntajan käyttö ja valinta vaikuttaa muuntamon elinikäkustannuksiin. Lopussa on kaksi todellista esimerkkiä, joissa voi olla mahdollisuus kyseenalaistaa muuntajavaihtoehto tai olla vaikeaa valita kannattavin ratkaisu. Suurimmat valintakriteerit muuntajalle Suomessa ovat taloudellisuus ja ympäristöystävällisyys. Ympäristöystävällisyys voi olla paikallista tai globaalia ympäristöhaitan torjuntaa. Myös kustannukset voidaan jakaa suoriin ja epäsuoriin muuntajasidonnaisiin kustannuksiin. Esimerkin kuvauksen jälkeen on laskettu yleisimpien vaihtoehtojen kustannukset ja esitetty niille perustelut.