978 resultados para tissue-engineered cartilage
Resumo:
Background: An arteriovenous loop (AVL) enclosed in a polycarbonate chamber in vivo, produces a fibrin exudate which acts as a provisional matrix for the development of a tissue engineered microcirculatory network. Objectives: By administering enoxaparin sodium - an inhibitor of fibrin polymerization, the significance of fibrin scaffold formation on AVL construct size (including the AVL, fibrin scaffold, and new tissue growth into the fibrin), growth, and vascularization were assessed and compared to controls. Methods: In Sprague Dawley rats, an AVL was created on femoral vessels and inserted into a polycarbonate chamber in the groin in 3 control groups (Series I) and 3 experimental groups (Series II). Two hours before surgery and 6 hours post-surgery, saline (Series I) or enoxaparin sodium (0.6 mg/kg, Series II) was administered intra-peritoneally. Thereafter, the rats were injected daily with saline (Series I) or enoxaparin sodium (1.5 mg/kg, Series II) until construct retrieval at 3, 10, or 21 days. The retrieved constructs underwent weight and volume measurements, and morphologic/morphometric analysis of new tissue components. Results: Enoxaparin sodium treatment resulted in the development of smaller AVL constructs at 3, 10, and 21 days. Construct weight and volume were significantly reduced at 10 days (control weight 0.337 ± 0.016 g [Mean ± SEM] vs treated 0.228 ± 0.048, [P < .001]: control volume 0.317 ± 0.015 mL vs treated 0.184 ± 0.039 mL [P < .01]) and 21 days (control weight 0.306 ± 0.053 g vs treated 0.198 ± 0.043 g [P < .01]: control volume 0.285 ± 0.047 mL vs treated 0.148 ± 0.041 mL, [P < .01]). Angiogenesis was delayed in the enoxaparin sodium-treated constructs with the absolute vascular volume significantly decreased at 10 days (control vascular volume 0.029 ± 0.03 mL vs treated 0.012 ± 0.002 mL [P < .05]). Conclusion: In this in vivo tissue engineering model, endogenous, extra-vascularly deposited fibrin volume determines construct size and vascular growth in the first 3 weeks and is, therefore, critical to full construct development.
Resumo:
Appropriate selection of scaffold architecture is a key challenge in cartilage tissue engineering. Gap junction-mediated intercellular contacts play important roles in precartilage condensation of mesenchymal cells. However, scaffold architecture could potentially restrict cell-cell communication and differentiation. This is particularly important when choosing the appropriate culture platform as well as scaffold-based strategy for clinical translation, that is, hydrogel or microtissues, for investigating differentiation of chondroprogenitor cells in cartilage tissue engineering. We, therefore, studied the influence of gap junction-mediated cell-cell communication on chondrogenesis of bone marrow-derived mesenchymal stromal cells (BM-MSCs) and articular chondrocytes. Expanded human chondrocytes and BM-MSCs were either (re-) differentiated in micromass cell pellets or encapsulated as isolated cells in alginate hydrogels. Samples were treated with and without the gap junction inhibitor 18-α glycyrrhetinic acid (18αGCA). DNA and glycosaminoglycan (GAG) content and gene expression levels (collagen I/II/X, aggrecan, and connexin 43) were quantified at various time points. Protein localization was determined using immunofluorescence, and adenosine-5'-triphosphate (ATP) was measured in conditioned media. While GAG/DNA was higher in alginate compared with pellets for chondrocytes, there were no differences in chondrogenic gene expression between culture models. Gap junction blocking reduced collagen II and extracellular ATP in all chondrocyte cultures and in BM-MSC hydrogels. However, differentiation capacity was not abolished completely by 18αGCA. Connexin 43 levels were high throughout chondrocyte cultures and peaked only later during BM-MSC differentiation, consistent with the delayed response of BM-MSCs to 18αGCA. Alginate hydrogels and microtissues are equally suited culture platforms for the chondrogenic (re-)differentiation of expanded human articular chondrocytes and BM-MSCs. Therefore, reducing direct cell-cell contacts does not affect in vitro chondrogenesis. However, blocking gap junctions compromises cell differentiation, pointing to a prominent role for hemichannel function in this process. Therefore, scaffold design strategies that promote an increasing distance between single chondroprogenitor cells do not restrict their differentiation potential in tissue-engineered constructs.
Resumo:
For a successful clinical outcome, periodontal regeneration requires the coordinated response of multiple soft and hard tissues (periodontal ligament, gingiva, cementum, and bone) during the wound-healing process. Tissue-engineered constructs for regeneration of the periodontium must be of a complex 3-dimensional shape and adequate size and demonstrate biomechanical stability over time. A critical requirement is the ability to promote the formation of functional periodontal attachment between regenerated alveolar bone, and newly formed cementum on the root surface. This review outlines the current advances in multiphasic scaffold fabrication and how these scaffolds can be combined with cell- and growth factor-based approaches to form tissue-engineered constructs capable of recapitulating the complex temporal and spatial wound-healing events that will lead to predictable periodontal regeneration. This can be achieved through a variety of approaches, with promising strategies characterized by the use of scaffolds that can deliver and stabilize cells capable of cementogenesis onto the root surface, provide biomechanical cues that encourage perpendicular alignment of periodontal fibers to the root surface, and provide osteogenic cues and appropriate space to facilitate bone regeneration. Progress on the development of multiphasic constructs for periodontal tissue engineering is in the early stages of development, and these constructs need to be tested in large animal models and, ultimately, human clinical trials.
Resumo:
This project provides a foundation for the use of silk membranes in a tissue engineered therapy for the treatment of devastating retinal diseases such as age-related macular degeneration. The three-dimensional tissue model described in this thesis has great potential for use in basic research of retinal pathologies, and the potential to be implemented into clinical approaches after appropriate refinement.
Resumo:
Treatment of joint diseases such as osteoarthritis is difficult and requires extensive developments for adequate solutions to emerge. Continued innovation in projects explored in this thesis may be beneficial to understanding the requirements of the joint environment. This may then lead to constructs that perform desirably from both mechanical and biological standpoints, resulting in complete, tissue-engineered osteochondral solutions. This thesis investigated specific scaffold designs for bone and osteochondral tissue engineering, as well as the formation of complex criteria on which cartilage hydrogel scaffolds may be assessed. The combination of hydrogels and ceramics were found to maintain chondrogenesis, while the concentration of photoinitiators in photocrosslinkable hydrogel systems may be optimised to maximise mechanical properties and cell viability. Finally, viscoelasticity of hydrogel blends was assessed using oscillatory motion, demonstrating the property is tailorable.
Resumo:
The treatment of large segmental bone defects remains a significant clinical challenge. Due to limitations surrounding the use of bone grafts, tissue-engineered constructs for the repair of large bone defects could offer an alternative. Before translation of any newly developed tissue engineering (TE) approach to the clinic, efficacy of the treatment must be shown in a validated preclinical large animal model. Currently, biomechanical testing, histology, and microcomputed tomography are performed to assess the quality and quantity of the regenerated bone. However, in vivo monitoring of the progression of healing is seldom performed, which could reveal important information regarding time to restoration of mechanical function and acceleration of regeneration. Furthermore, since the mechanical environment is known to influence bone regeneration, and limb loading of the animals can poorly be controlled, characterizing activity and load history could provide the ability to explain variability in the acquired data sets and potentially outliers based on abnormal loading. Many approaches have been devised to monitor the progression of healing and characterize the mechanical environment in fracture healing studies. In this article, we review previous methods and share results of recent work of our group toward developing and implementing a comprehensive biomechanical monitoring system to study bone regeneration in preclinical TE studies.
Resumo:
Biological machines are active devices that are comprised of cells and other biological components. These functional devices are best suited for physiological environments that support cellular function and survival. Biological machines have the potential to revolutionize the engineering of biomedical devices intended for implantation, where the human body can provide the required physiological environment. For engineering such cell-based machines, bio-inspired design can serve as a guiding platform as it provides functionally proven designs that are attainable by living cells. In the present work, a systematic approach was used to tissue engineer one such machine by exclusively using biological building blocks and by employing a bio-inspired design. Valveless impedance pumps were constructed based on the working principles of the embryonic vertebrate heart and by using cells and tissue derived from rats. The function of these tissue-engineered muscular pumps was characterized by exploring their spatiotemporal and flow behavior in order to better understand the capabilities and limitations of cells when used as the engines of biological machines.
Resumo:
Human mesenchymal stem cells (hMSCs) and three-dimensional (3D) woven poly(ɛ-caprolactone) (PCL) scaffolds are promising tools for skeletal tissue engineering. We hypothesized that in vitro culture duration and medium additives can individually and interactively influence the structure, composition, mechanical, and molecular properties of engineered tissues based on hMSCs and 3D poly(ɛ-caprolactone). Bone marrow hMSCs were suspended in collagen gel, seeded on scaffolds, and cultured for 1, 21, or 45 days under chondrogenic and/or osteogenic conditions. Structure, composition, biomechanics, and gene expression were analyzed. In chondrogenic medium, cartilaginous tissue formed by day 21, and hypertrophic mineralization was observed in the newly formed extracellular matrix at the interface with underlying scaffold by day 45. Glycosaminoglycan, hydroxyproline, and calcium contents, and alkaline phosphatase activity depended on culture duration and medium additives, with significant interactive effects (all p < 0.0001). The 45-day constructs exhibited mechanical properties on the order of magnitude of native articular cartilage (aggregate, Young's, and shear moduli of 0.15, 0.12, and 0.033 MPa, respectively). Gene expression was characteristic of chondrogenesis and endochondral bone formation, with sequential regulation of Sox-9, collagen type II, aggrecan, core binding factor alpha 1 (Cbfα1)/Runx2, bone sialoprotein, bone morphogenetic protein-2, and osteocalcin. In contrast, osteogenic medium produced limited osteogenesis. Long-term culture of hMSC on 3D scaffolds resulted in chondrogenesis and regional mineralization at the interface between soft, newly formed engineered cartilage, and stiffer underlying scaffold. These findings merit consideration when developing grafts for osteochondral defect repair.
Resumo:
BACKGROUND: Image contrast in clinical MRI is often determined by differences in tissue water proton relaxation behavior. However, many aspects of water proton relaxation in complex biological media, such as protein solutions and tissue are not well understood, perhaps due to the limited empirical data. PRINCIPAL FINDINGS: Water proton T(1), T(2), and T(1rho) of protein solutions and tissue were measured systematically under multiple conditions. Crosslinking or aggregation of protein decreased T(2) and T(1rho), but did not change high-field T(1). T(1rho) dispersion profiles were similar for crosslinked protein solutions, myocardial tissue, and cartilage, and exhibited power law behavior with T(1rho)(0) values that closely approximated T(2). The T(1rho) dispersion of mobile protein solutions was flat above 5 kHz, but showed a steep curve below 5 kHz that was sensitive to changes in pH. The T(1rho) dispersion of crosslinked BSA and cartilage in DMSO solvent closely resembled that of water solvent above 5 kHz but showed decreased dispersion below 5 kHz. CONCLUSIONS: Proton exchange is a minor pathway for tissue T(1) and T(1rho) relaxation above 5 kHz. Potential models for relaxation are discussed, however the same molecular mechanism appears to be responsible across 5 decades of frequencies from T(1rho) to T(1).
Resumo:
While advances in regenerative medicine and vascular tissue engineering have been substantial in recent years, important stumbling blocks remain. In particular, the limited life span of differentiated cells that are harvested from elderly human donors is an important limitation in many areas of regenerative medicine. Recently, a mutant of the human telomerase reverse transcriptase enzyme (TERT) was described, which is highly processive and elongates telomeres more rapidly than conventional telomerase. This mutant, called pot1-TERT, is a chimeric fusion between the DNA binding protein pot1 and TERT. Because pot1-TERT is highly processive, it is possible that transient delivery of this transgene to cells that are utilized in regenerative medicine applications may elongate telomeres and extend cellular life span while avoiding risks that are associated with retroviral or lentiviral vectors. In the present study, adenoviral delivery of pot1-TERT resulted in transient reconstitution of telomerase activity in human smooth muscle cells, as demonstrated by telomeric repeat amplification protocol (TRAP). In addition, human engineered vessels that were cultured using pot1-TERT-expressing cells had greater collagen content and somewhat better performance in vivo than control grafts. Hence, transient delivery of pot1-TERT to elderly human cells may be useful for increasing cellular life span and improving the functional characteristics of resultant tissue-engineered constructs.
Resumo:
Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration.
Resumo:
Rationale: Smooth muscle cells (SMCs) are a key component of tissue-engineered vessels. However, the sources by which they can be isolated are limited.
Objective: We hypothesized that a large number of SMCs could be obtained by direct reprogramming of fibroblasts, that is, direct differentiation of specific cell lineages before the cells reaching the pluripotent state.
Methods and Results: We designed a combined protocol of reprogramming and differentiation of human neonatal lung fibroblasts. Four reprogramming factors (OCT4, SOX2, KLF4, and cMYC) were overexpressed in fibroblasts under reprogramming conditions for 4 days with cells defined as partially-induced pluripotent stem (PiPS) cells. PiPS cells did not form tumors in vivo after subcutaneous transplantation in severe combined immunodeficiency mice and differentiated into SMCs when seeded on collagen IV and maintained in differentiation media. PiPS-SMCs expressed a panel of SMC markers at mRNA and protein levels. Furthermore, the gene dickkopf 3 was found to be involved in the mechanism of PiPS-SMC differentiation. It was revealed that dickkopf 3 transcriptionally regulated SM22 by potentiation of Wnt signaling and interaction with Kremen1. Finally, PiPS-SMCs repopulated decellularized vessel grafts and ultimately gave rise to functional tissue-engineered vessels when combined with previously established PiPS-endothelial cells, leading to increased survival of severe combined immunodeficiency mice after transplantation of the vessel as a vascular graft.
Conclusions: We developed a protocol to generate SMCs from PiPS cells through a dickkopf 3 signaling pathway, useful for generating tissue-engineered vessels. These findings provide a new insight into the mechanisms of SMC differentiation with vast therapeutic potential.
Resumo:
Le génie tissulaire est un domaine interdisciplinaire qui applique les principes du génie et des sciences de la vie (notamment la science des cellules souches) dans le but de régénérer et réparer les tissus et organes lésés. En d'autres mots, plutôt que de remplacer les tissus et les organes, on les répare. La recherche en génie tissulaire est considérable et les ambitions sont grandes, notamment celle de mettre fm aux listes d'attente de dons d'organes. Le génie tissulaire a déjà commencé à livrer des produits thérapeutiques pour des applications simples, notamment la peau et le cartilage. Les questions sur la façon de réglementer les produits thérapeutiques qui sont issus du génie tissulaire sont soulevées à chaque nouveau produit. À ce jour, ces questions ont reçu peu d'attention comparativement aux questions éthiques associées aux recherches avec les cellules souches et les risques qu'engendrent les produits biologiques. Il est donc important d'examiner si le cadre normatif qui entoure la mise en marché des produits issus du génie tissulaire est approprié puisque de tels produits sont déjà disponibles sur le marché et plusieurs autres sont en voie de l'être. Notre analyse révèle que le cadre canadien actuel n'est pas approprié et le moment d'une reforme est arrivé. Les États-Unis et l'Union européenne ont chacun des approches particulières qui sont instructives. Nous avons entrepris une revue des textes réglementaires qui encadrent la mise en marché des produits issus du génie tissulaire au Canada, aux États-Unis et dans l'Union européenne et formulons quelques suggestions de réforme.
Resumo:
The aim of this study was to construct an artificial fetal membrane (FM) by combination of human amniotic epithelial stem cells (hAESCs) and a mechanically enhanced collagen scaffold containing encapsulated human amniotic stromal fibroblasts (hASFs). Such a tissue-engineered FM may have the potential to plug structural defects in the amniotic sac after antenatal interventions, or to prevent preterm premature rupture of the FM. The hAESCs and hASFs were isolated from human fetal amniotic membrane (AM). Magnetic cell sorting was used to enrich the hAESCs by positive ATP-binding cassette G2 selection. We investigated the use of a laminin/fibronectin (1:1)-coated compressed collagen gel as a novel scaffold to support the growth of hAESCs. A type I collagen gel was dehydrated to form a material mimicking the mechanical properties and ultra-structure of human AM. hAESCs successfully adhered to and formed a monolayer upon the biomimetic collagen scaffold. The resulting artificial membrane shared a high degree of similarity in cell morphology, protein expression profiles, and structure to normal fetal AM. This study provides the first line of evidence that a compacted collagen gel containing hASFs could adequately support hAESCs adhesion and differentiation to a degree that is comparable to the normal human fetal AM in terms of structure and maintenance of cell phenotype.
Resumo:
We have investigated the influence of long-term confined dynamic compression and surface motion under low oxygen tension on tissue-engineered cell-scaffold constructs. Porous polyurethane scaffolds (8 mm x 4 mm) were seeded with bovine articular chondrocytes and cultured under normoxic (21% O(2)) or hypoxic (5% O(2)) conditions for up to 4 weeks. By means of our joint-simulating bioreactor, cyclic axial compression (10-20%; 0.5 Hz) was applied for 1 h daily with a ceramic ball, which simultaneously oscillated over the construct surface (+/-25 degrees; 0.5 Hz). Culture under reduced oxygen tension resulted in an increase in mRNA levels of type II collagen and aggrecan, whereas the expression of type I collagen was down-regulated at early time points. A higher glycosaminoglycan content was found in hypoxic than in normoxic constructs. Immunohistochemical analysis showed more intense type II and weaker type I collagen staining in hypoxic than in normoxic cultures. Type II collagen gene expression was slightly elevated after short-term loading, whereas aggrecan mRNA levels were not influenced by the applied mechanical stimuli. Of importance, the combination of loading and low oxygen tension resulted in a further down-regulation of collagen type I mRNA expression, contributing to the stabilization of the chondrocytic phenotype. Histological results confirmed the beneficial effect of mechanical loading on chondrocyte matrix synthesis. Thus, mechanical stimulation combined with low oxygen tension is an effective tool for modulating the chondrocytic phenotype and should be considered when chondrocytes or mesenchymal stem cells are cultured and differentiated with the aim of generating cartilage-like tissue in vitro.