978 resultados para thermal light


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three kinds of metal(II) tetraazaporphyrin complexes with blue-violet and red light wavelength absorption were synthesized by refluxing tetraazaporphyrin ligand and different metal(II) ions, respectively. Their structures were confirmed by elemental analysis, LDI-TOF-MS, FT-IR and UV-Vis. The solubility of metal(II) tetraazaporphyrin complexes in organic solvents and absorption properties of their chloroform solution and films on K9 glass in the region 250-800 nm were measured. The influence on the difference of absorption maximum from metal(II) tetraazaporphyrin complexes to tetraazaporphyrin ligand by different metal(II) ions was studied. In addition, the thermal stability of the complexes was also evaluated. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two kinds of nickel(II) and copper(II) P-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal stress-induced birefringence in borate glass which has been irradiated by 800-nm femtosecond laser pulses is observed under cross-polarized light. Due to the high temperature and pressure formed in the focal volume, the material at the edge of the micro-modified region is compressed between the expanding region and the unheated one, then stress emerges. Raman spectroscopy is used to investigate the stress distribution in the micro-modified region and indicates the redistributions of density and refractive index by Raman peak shift. We suggest that this technique can develop waveguide polarizers and Fresnel zone plates in integrated optics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene has extraordinary electronic and optical properties and holds great promise for applications in photonics and optoelectronics. Demonstrations including high-speed photodetectors, optical modulators, plasmonic devices, and ultrafast lasers have now been reported. More advanced device concepts would involve photonic elements such as cavities to control light-matter interaction in graphene. Here we report the first monolithic integration of a graphene transistor and a planar, optical microcavity. We find that the microcavity-induced optical confinement controls the efficiency and spectral selection of photocurrent generation in the integrated graphene device. A twenty-fold enhancement of photocurrent is demonstrated. The optical cavity also determines the spectral properties of the electrically excited thermal radiation of graphene. Most interestingly, we find that the cavity confinement modifies the electrical transport characteristics of the integrated graphene transistor. Our experimental approach opens up a route towards cavity-quantum electrodynamics on the nanometre scale with graphene as a current-carrying intra-cavity medium of atomic thickness. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes the application of the light-attenuation technique as a tool for measuring dilution occurring in buoyancy-driven flows. Whilst this technique offers the experimental fluid dynamicist the ability to make rapid synoptic buoyancy measurements non-intrusively, its successful application requires careful selection of chemical dye, dye concentration, illumination and optics. After establishing the advantages offered by methylene blue as a dyeing agent, we assess the accuracy of buoyancy measurements made using this technique compared with direct measurements made with density meters. Density measurements obtained using light-attenuation differ from those obtained using the density meter by typically less than 3%. It is hoped that this article will provide useful advice with regards to its implementation in the field of buoyancy-driven flows. © 2011 Elsevier Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the properties of light emitting devices whose active layer consists of Er-doped Si nanoclusters (nc) generated by thermal annealing of Er-doped SiOx layers prepared by magnetron cosputtering. Differently from a widely used technique such as plasma enhanced chemical vapor deposition, sputtering allows to synthesize Er-doped Si nc embedded in an almost stoichiometric oxide matrix, so as to deeply influence the electroluminescence properties of the devices. Relevant results include the need for an unexpected low Si excess for optimizing the device efficiency and, above all, the strong reduction of the influence of Auger de-excitation, which represents the main nonradiative path which limits the performances of such devices and their application in silicon nanophotonics. © 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured polymer-fullerene thin films are among the most prominent materials for application in high efficient polymer solar cells. Specifically, poly(3-hexylthiophene) (P3HT) and fullerene derivatives (PCBM) blends are used as the donor/acceptor materials forming a bulk heterojunction. Although P3HT:PCBM properties have been extensively studied, less light has been set on its nanomechanical properties, which affect the device service life. In this work Atomic Force Acoustic Microscopy (AFAM), Atomic Force Spectroscopy and Nanoindentation were used to study the effect of the fullerene presence and the annealing on the P3HT:PCBM nanomechanical behavior. The P3HT:PCBM thin films were prepared by spin coating on glass substrates and then annealed at 100 °C and 145 °C for 30 min. Large phase separation was identified by optical and Atomic Force Microscopy (AFM) for the annealed samples. Needle-like PCBM crystals were formed and an increase of the polymer crystallinity degree with the increase of the annealing temperature was confirmed by X-ray diffraction. AFAM characterization revealed the presence of aggregates close to stiff PCBM crystals, possibly consisting of amorphous P3HT material. AFM force-distance curves showed a continuous change in stiffness in the vicinity of the PCBM crystals, due to the PCBM depletion near its crystals, and the AFM indentation provided qualitative results about the changes in P3HT nanomechanical response after annealing. © 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 degrees C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 mu m light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 gm reached maximum at 800 degrees C and decreased dramatically at 1000 degrees C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metamorphic InGaAs quantum well structures grown on GaAs reveal strong light emission at 1.3-1.6 mu m, smooth surface with an average roughness below 2 nm. and good rectifying I-V characteristics. Dark line defects are found in the QW Post growth thermal annealing further improves the luminescence efficiency but does not remove those dark line defects. Some challenges of epitaxial growth using this method for laser applications are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved light-current curves, spectra, and far-field distributions of ridge structure InGaN multiple quantum well laser diodes grown on sapphire substrate are measured with a temporal resolution of 0.1 ns under a pulsed current condition. Results show that the thermal lensing effect clearly improves the confinement of the higher order modes. The thermal lens leads to a lower threshold current for the higher order modes, a higher slope efficiency, and a change in the lasing mode of the device. The threshold current for the higher modes decreases by about 5 mA in every 10 ns in a pulse, and the slope efficiency increases by 7.5 times on the average when higher modes lase. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman scattering, photoluminescence (PL), and nuclear reaction analysis (MA) have been employed to investigate the effects of rapid thermal annealing (RTA) on GaN films grown on sapphire (0001) substrates by gas-source molecular-beam epitaxy, The Raman spectra showed the presence of the E-2 (high) mode of GaN and shift of this mode from 572 to 568 cm(-1) caused by annealing. The results showed that RTA has a significant effect on the strain relaxation caused by the lattice and thermal expansion misfit between the GaN epilayer and the substrate. The PL peak exhibited a blueshift in its energy position and a decrease in the full width at half maximum after annealing, indicating an improvement in the optical quality of the film. Furthermore, a green luminescence appeared after annealing and increased in intensity with increasing annealing time. This effect was attributed to H concentration variation in the GaN film, which was measured by NRA. A high H concentration exists in as-grown GaN, which can neutralize the deep level, and the H-bonded complex dissociates during RTA, This leads to the appearance of a luminescent peak in the PL spectrum. (C) 1998 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of rapid thermal annealing (RTA) in a Nz ambient up to 900 degrees C has been investigated for GaN films grown on sapphire(0 0 0 1) substrates. Raman spectra, X-ray diffractometry and Hall-effect studies were performed for this purpose. The Raman spectra show the presence of the E-2 (high) mode and a shift in the wave number of this mode with respect to the annealing processing. This result suggests the presence and relaxation of residual stress due to thermal expansion misfit in the films which are confirmed by X-ray measurements and the structure quality of GaN epilayer was improved. Furthermore, the electron mobility increased at room temperature with respect to decrease of background electron concentration after RTA. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from -20 to 190 K, and the heat fluxes reach 140 W/cm(2). The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid. Boiling curves of copper foams show three distinct regions. Region I and II are those of natural convection heat transfer, and nucleate boiling heat transfer for all the foam covers. Region III is that of either a resistance to vapor release for the 30 and 60 ppi foam covers, or a capillary-assist liquid flow towards foam cells for the 90 ppi foam covers. The value of ppi has an important effect on the thermal performance. Boiling curves are crossed between the high and low ppi foam covers. Low ppi foams have better thermal performance at low surface superheats, but high ppi foams have better one at moderate or large surface superheats and extend the operation range of surface superheats. The effects of other factors such as pool liquid temperature, foam cover thickness on the thermal performance are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bipolar transport compound, 2,5-bis(4-(9-(2-ethylhexyl)-9H-carbazol-3-yl) phenyl)-1,3,4-oxadiazole (CzOXD), incorporating both electron-and hole-transport functionalities, was synthesized and fully characterized by H-1 NMR, C-13 NMR, elemental analysis and mass spectrometry. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of NIR organic chromophores with donor-pi-acceptor-pi-donor structure are synthesized. Good thermal stability and strong photoluminescence in solid state render them suitable for application in light-emitting diodes. Exclusive near-infrared emission at 1080 nm with external quantum efficiency of 0.28% is obtained from the nondoped OLEDs. The longest electroluminescence wave-length is 1220 nm.