944 resultados para systems modeling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have modeled various soft-matter systems with molecular dynamics (MD) simulations. The first topic concerns liquid crystal (LC) biaxial nematic (Nb) phases, that can be possibly used in fast displays. We have investigated the phase organization of biaxial Gay-Berne (GB) mesogens, considering the effects of the orientation, strength and position of a molecular dipole. We have observed that for systems with a central dipole, nematic biaxial phases disappear when increasing dipole strength, while for systems characterized by an offset dipole, the Nb phase is stabilized at very low temperatures. In a second project, in view of their increasing importance as nanomaterials in LC phases, we are developing a DNA coarse-grained (CG) model, in which sugar and phosphate groups are represented with Lennard-Jones spheres, while bases with GB ellipsoids. We have obtained shape, position and orientation parameters for each bead, to best reproduce the atomistic structure of a B-DNA helix. Starting from atomistic simulations results, we have completed a first parametrization of the force field terms, accounting for bonded (bonds, angles and dihedrals) and non-bonded interactions (H-bond and stacking). We are currently validating the model, by investigating stability and melting temperature of various sequences. Finally, in a third project, we aim to explain the mechanism of enantiomeric discrimination due to the presence of a chiral helix of poly(gamma-benzyl L-glutamate) (PBLG), in solution of dimethylformamide (DMF), interacting with chiral or pro-chiral molecules (in our case heptyl butyrate, HEP), after tuning properly an atomistic force field (AMBER). We have observed that DMF and HEP molecules solvate uniformly the PBLG helix, but the pro-chiral solute is on average found closer to the helix with respect to the DMF. The solvent presents a faster isotropic diffusion, twice as HEP, also indicating a stronger interaction of the solute with the helix.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the last decade peach and nectarine fruit have lost considerable market share, due to increased consumer dissatisfaction with quality at retail markets. This is mainly due to harvesting of too immature fruit and high ripening heterogeneity. The main problem is that the traditional used maturity indexes are not able to objectively detect fruit maturity stage, neither the variability present in the field, leading to a difficult post-harvest management of the product and to high fruit losses. To assess more precisely the fruit ripening other techniques and devices can be used. Recently, a new non-destructive maturity index, based on the vis-NIR technology, the Index of Absorbance Difference (IAD), that correlates with fruit degreening and ethylene production, was introduced and the IAD was used to study peach and nectarine fruit ripening from the “field to the fork”. In order to choose the best techniques to improve fruit quality, a detailed description of the tree structure, of fruit distribution and ripening evolution on the tree was faced. More in details, an architectural model (PlantToon®) was used to design the tree structure and the IAD was applied to characterize the maturity stage of each fruit. Their combined use provided an objective and precise evaluation of the fruit ripening variability, related to different training systems, crop load, fruit exposure and internal temperature. Based on simple field assessment of fruit maturity (as IAD) and growth, a model for an early prediction of harvest date and yield, was developed and validated. The relationship between the non-destructive maturity IAD, and the fruit shelf-life, was also confirmed. Finally the obtained results were validated by consumer test: the fruit sorted in different maturity classes obtained a different consumer acceptance. The improved knowledge, leaded to an innovative management of peach and nectarine fruit, from “field to market”.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work is to investigate, using extensive Monte Carlo computer simulations, composite materials consisting of liquid crystals doped with nanoparticles. These systems are currently of great interest as they offer the possibility of tuning the properties of liquid crystals used in displays and other devices as well as providing a way of obtaining regularly organized systems of nanoparticles exploiting the molecular organization of the liquid crystal medium. Surprisingly enough, there is however a lack of fundamental knowledge on the properties and phase behavior of these hybrid materials, making the route to their application an essentially empirical one. Here we wish to contribute to the much needed rationalization of these systems studying some basic effects induced by different nanoparticles on a liquid crystal host. We investigate in particular the effects of nanoparticle shape, size and polarity as well as of their affinity to the liquid crystal solvent on the stability of the system, monitoring phase transitions, order and molecular organizations. To do this we have proposed a coarse grained approach where nanoparticles are modelled as a suitably shaped (spherical, rod and disk like) collection of spherical Lennard-Jones beads, while the mesogens are represented with Gay-Berne particles. We find that the addition of apolar nanoparticles of different shape typically lowers the nematic–isotropic transition of a non-polar nematic, with the destabilization being greater for spherical nanoparticles. For polar mesogens we have studied the effect of solvent affinity of the nanoparticles showing that aggregation takes places for low solvation values. Interestingly, if the nanoparticles are polar the aggregates contribute to stabilizing the system, compensating the shape effect. We thus find the overall effects on stability to be a delicate balance of often contrasting contributions pointing to the relevance of simulations studies for understanding these complex systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis explores system performance for reconfigurable distributed systems and provides an analytical model for determining throughput of theoretical systems based on the OpenSPARC FPGA Board and the SIRC Communication Framework. This model was developed by studying a small set of variables that together determine a system¿s throughput. The importance of this model is in assisting system designers to make decisions as to whether or not to commit to designing a reconfigurable distributed system based on the estimated performance and hardware costs. Because custom hardware design and distributed system design are both time consuming and costly, it is important for designers to make decisions regarding system feasibility early in the development cycle. Based on experimental data the model presented in this paper shows a close fit with less than 10% experimental error on average. The model is limited to a certain range of problems, but it can still be used given those limitations and also provides a foundation for further development of modeling reconfigurable distributed systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Telescopic systems of structural members with clearance are found in many applications, e.g., mobile cranes, rack feeders, fork lifters, stacker cranes (see Figure 1). Operating these machines, undesirable vibrations may reduce the performance and increase safety problems. Therefore, this contribution has the aim to reduce these harmful vibrations. For a better understanding, the dynamic behaviour of these constructions is analysed. The main interest is the overlapping area of each two sections of the above described systems (see markings in Figure 1) which is investigated by measurements and by computations. A test rig is constructed to determine the dynamic behaviour by measuring fundamental vibrations and higher frequent oscillations, damping coefficients, special appearances and more. For an appropriate physical model, the governing boundary value problem is derived by applying Hamilton’s principle and a classical discretisation procedure is used to generate a coupled system of nonlinear ordinary differential equations as the corresponding truncated mathematical model. On the basis of this model, a controller concept for preventing harmful vibrations is developed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ore-forming and geoenviromental systems commonly involve coupled fluid flowand chemical reaction processes. The advanced numerical methods and computational modeling have become indispensable tools for simulating such processes in recent years. This enables many hitherto unsolvable geoscience problems to be addressed using numerical methods and computational modeling approaches. For example, computational modeling has been successfully used to solve ore-forming and mine site contamination/remediation problems, in which fluid flow and geochemical processes play important roles in the controlling dynamic mechanisms. The main purpose of this paper is to present a generalized overview of: (1) the various classes and models associated with fluid flow/chemically reacting systems in order to highlight possible opportunities and developments for the future; (2) some more general issues that need attention in the development of computational models and codes for simulating ore-forming and geoenviromental systems; (3) the related progresses achieved on the geochemical modeling over the past 50 years or so; (4) the general methodology for modeling of oreforming and geoenvironmental systems; and (5) the future development directions associated with modeling of ore-forming and geoenviromental systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To track down potential sites of material failure in the tile–mortar–substrate systems, locations and intensities of stress concentrations owing to drying-induced shrinkage are investigated. For this purpose, mechanical properties were measured on real systems and used as input parameters for numerical modeling of the effect of shrinkage of substrate and/or mortar using the finite element code Abaqus. On the base of different geometrical set-ups we demonstrate that stress concentrations in the mortar can become critical when (i) substantial mortar shrinkage occurs, (ii) substrate shrinkage can accumulate over considerable spatial distances, particularly (iii) in situations where the mortar layer is not separated from the substrate by a flexible waterproofing membrane. Hence material failure in the system tile–mortar–substrate can be prevented (or reduced) by (i) an application of the tiles after the major stages of substrate shrinkage, (ii) the use of elasto-plastic deformable tile adhesives which can react elastically on local stress concentrations, (iii) the implementation of flexible membranes, and (iv) a reduction of the field size by the installation of flexible joints.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Public participation is increasingly advocated as a necessary feature of natural resources management. The EU Water Framework Directive (WFD) is such an example, as it prescribes participatory processes as necessary features in basin management plans (EC 2000). The rationale behind this mandate is that involving interest groups ideally yields higher-quality decisions, which are arguably more likely to meet public acceptance (Pahl-Wostl, 2006). Furthermore, failing to involve stakeholders in policy-making might hamper the implementation of management initiatives, as controversial decisions can lead pressure lobbies to generate public opposition (Giordano et al. 2005, Mouratiadou and Moran 2007).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Getting a lower energy cost has always been a challenge for concentrated photovoltaic. The FK concentrator enhances the performance (efficiency, acceptance angle and manufacturing tolerances) of the conventional CPV system based on a Fresnel primary stage and a secondary lens, while keeping its simplicity and potentially low‐cost manufacturing. At the same time F‐XTP (Fresnel lens+reflective prism), at the first glance has better cost potential but significantly higher sensitivity to manufacturing errors. This work presents comparison of these two approaches applied to two main technologies of Fresnel lens production (PMMA and Silicone on Glass) and effect of standard deformations that occur under real operation conditions