979 resultados para super-resolution


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a novel nanolens with super resolution, based on the photon nanojet effect through dielectric nanostructures in visible wavelengths, is proposed. The nanolens is made from plastic SU-8, consisting of parallel semi-cylinders in an array. This paper focuses on the lens designed by numerical simulation with the finite-difference time domain method and nanofabrication of the lens by grayscale electron beam lithography combined with a casting/bonding/lift-off transfer process. Monte Carlo simulation for injected charge distribution and development modeling was applied to define the resultant 3D profile in PMMA as the template for the lens shape. After the casting/bonding/lift-off process, the fabricated nanolens in SU-8 has the desired lens shape, very close to that of PMMA, indicating that the pattern transfer process developed in this work can be reliably applied not only for the fabrication of the lens but also for other 3D nanopatterns in general. The light distribution through the lens near its surface was initially characterized by a scanning near-field optical microscope, showing a well defined focusing image of designed grating lines. Such focusing function supports the great prospects of developing a novel nanolithography based on the photon nanojet effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1. Our experimental results directly serve as input parameters for computational modeling of the ligand-receptor interaction. Simulations corroborate the experimental finding of higher-order oligomeric states. This work is a first demonstration how quantitative, super-resolution and advanced microscopy can be used for systems biology approaches at the single-molecule and single-cell level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The actin nodule is a novel F-actin structure present in platelets during early spreading. However, only limited detail is known regarding nodule organization and function. Here we use electron microscopy, SIM and dSTORM super-resolution, and live-cell TIRF microscopy to characterize the structural organization and signalling pathways associated with nodule formation. Nodules are composed of up to four actin-rich structures linked together by actin bundles. They are enriched in the adhesion-related proteins talin and vinculin, have a central core of tyrosine phosphorylated proteins and are depleted of integrins at the plasma membrane. Nodule formation is dependent on Wiskott-Aldrich syndrome protein (WASp) and the ARP2/3 complex. WASp(-/-) mouse blood displays impaired platelet aggregate formation at arteriolar shear rates. We propose actin nodules are platelet podosome-related structures required for platelet-platelet interaction and their absence contributes to the bleeding diathesis of Wiskott-Aldrich syndrome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study is to develop and evaluate techniques that improve the spatial resolution of the channels already selected in the preliminary studies for Geostationary Observatory for Microwave Atmospheric Soundings (GOMAS). Reference high resolution multifrequency brightness temperatures scenarios have been derived by applying radiative transfer calculation to the spatially and microphysically detailed output of meteorological events simulated by the University of Wisconsin - Non-hydrostatic Model System (UW-NMS). Three approaches, Wiener filter, Super-Resolution and Image Fusion have been applied to some representative GOMAS frequency channels to enhance the resolution of antenna temperatures. The Wiener filter improved resolution of the largely oversampled images by a factor 1.5- 2.0 without introducing any penalty in the radiometric accuracy. Super-resolution, suitable for not largely oversampled images, improved resolution by a factor ~1.5 but introducing an increased radiometric noise by a factor 1.4-2.5. The image fusion allows finally to further increase the spatial frequency of the images obtained by the Wiener filter increasing the total resolution up to a factor 5.0 with an increased radiometric noise closely linked to the radiometric frequency and to the examined case study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La termografia è un metodo d’indagine ampiamente utilizzato nei test diagnostici non distruttivi, in quanto risulta una tecnica d’indagine completamente non invasiva, ripetibile nel tempo e applicabile in diversi settori. Attraverso tale tecnica è possibile individuare difetti superficiali e sub–superficiali, o possibili anomalie, mediante la rappresentazione della distribuzione superficiale di temperatura dell’oggetto o dell’impianto indagato. Vengono presentati i risultati di una campagna sperimentale di rilevamenti termici, volta a stabilire i miglioramenti introdotti da tecniche innovative di acquisizione termografica, quali ad esempio la super-risoluzione, valutando un caso di studio di tipo industriale. Si è effettuato un confronto tra gli scatti registrati, per riuscire a individuare e apprezzare le eventuali differenze tra le diverse modalità di acquisizione adottate. L’analisi dei risultati mostra inoltre come l’utilizzo dei dispositivi di acquisizione termografica in modalità super-resolution sia possibile anche su cavalletto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advances in food transformation have dramatically increased the diversity of products on the market and, consequently, exposed consumers to a complex spectrum of bioactive nutrients whose potential risks and benefits have mostly not been confidently demonstrated. Therefore, tools are needed to efficiently screen products for selected physiological properties before they enter the market. NutriChip is an interdisciplinary modular project funded by the Swiss programme Nano-Tera, which groups scientists from several areas of research with the aim of developing analytical strategies that will enable functional screening of foods. The project focuses on postprandial inflammatory stress, which potentially contributes to the development of chronic inflammatory diseases. The first module of the NutriChip project is composed of three in vitro biochemical steps that mimic the digestion process, intestinal absorption, and subsequent modulation of immune cells by the bioavailable nutrients. The second module is a miniaturised form of the first module (gut-on-a-chip) that integrates a microfluidic-based cell co-culture system and super-resolution imaging technologies to provide a physiologically relevant fluid flow environment and allows sensitive real-time analysis of the products screened in vitro. The third module aims at validating the in vitro screening model by assessing the nutritional properties of selected food products in humans. Because of the immunomodulatory properties of milk as well as its amenability to technological transformation, dairy products have been selected as model foods. The NutriChip project reflects the opening of food and nutrition sciences to state-of-the-art technologies, a key step in the translation of transdisciplinary knowledge into nutritional advice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The advent of single molecule fluorescence microscopy has allowed experimental molecular biophysics and biochemistry to transcend traditional ensemble measurements, where the behavior of individual proteins could not be precisely sampled. The recent explosion in popularity of new super-resolution and super-localization techniques coupled with technical advances in optical designs and fast highly sensitive cameras with single photon sensitivity and millisecond time resolution have made it possible to track key motions, reactions, and interactions of individual proteins with high temporal resolution and spatial resolution well beyond the diffraction limit. Within the purview of membrane proteins and ligand gated ion channels (LGICs), these outstanding advances in single molecule microscopy allow for the direct observation of discrete biochemical states and their fluctuation dynamics. Such observations are fundamentally important for understanding molecular-level mechanisms governing these systems. Examples reviewed here include the effects of allostery on the stoichiometry of ligand binding in the presence of fluorescent ligands; the observation of subdomain partitioning of membrane proteins due to microenvironment effects; and the use of single particle tracking experiments to elucidate characteristics of membrane protein diffusion and the direct measurement of thermodynamic properties, which govern the free energy landscape of protein dimerization. The review of such characteristic topics represents a snapshot of efforts to push the boundaries of fluorescence microscopy of membrane proteins to the absolute limit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The capability of a device called the Spherical Geodesic Waveguide (SGW) to produce images with details below the classic Abbe diffraction limit (super-resolution) is analyzed here. The SGW is an optical system equivalent (by means of Transformation Optics) to the Maxwell Fish Eye (MFE) refractive index distribution. Recently, it has been claimed that the necessary condition to get super-resolution in the MFE and the SGW is the use of a Perfect Point Drain (PPD). The PPD is a punctual receptor placed in the focal point that absorbs the incident wave, without reflection or scattering. A microwave circuit comprising three elements, the SGW, the source and the drain (two coaxial lines loaded with specific impedances) is designed and simulated in COMSOL. The super-resolution properties have been analyzed for different position of the source and drain and for two different load impedances: the PPD and the characteristic line impedance. The results show that in both cases super-resolution occurs only for discrete number of frequencies. Out of these frequencies, the SGW does not show SR in the analysis carried out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that subwavelength diffracted wave fields may be managed inside multilayered plasmonic devices to achieve ultra-resolving lensing. For that purpose we first transform both homogeneous waves and a broad band of evanescent waves into propagating Bloch modes by means of a metal/dielectric (MD) superlattice. Beam spreading is subsequently compensated by means of negative refraction in a plasmon-induced anisotropic effective-medium that is cemented behind. A precise design of the superlens doublet may lead to nearly aberration-free images with subwavelength resolution in spite of using optical paths longer than a wavelength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The papers is dedicated to the questions of modeling and basing super-resolution measuring- calculating systems in the context of the conception “device + PC = new possibilities”. By the authors of the article the new mathematical method of solution of the multi-criteria optimization problems was developed. The method is based on physic-mathematical formalism of reduction of fuzzy disfigured measurements. It is shown, that determinative part is played by mathematical properties of physical models of the object, which is measured, surroundings, measuring components of measuring-calculating systems and theirs cooperation as well as the developed mathematical method of processing and interpretation of measurements problem solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We thank Frans Bianchi and Franz Ho for assistance with molecular cloning, Tim Rasmussen for providing the pTRC-MscK plasmid, Andrew Robinson for providing the pBAD-mEos3.2 plasmid, Matthias Heinemann for assistance with the flow cytometry measurements, Paul Schavemaker for performing Smoldyn simulations and Michiel Punter for programming ImageJ plugins for PALM reconstructions and single-particle tracking. We thank Ian Booth for critical reading of the manuscript, and Christoffer Åberg and Matteo Gabba for valuable discussions. The authors would like to thank David Dryden and Marcel Reuter for performing preliminary experiments from which this work has been built. The work was funded by the EU FP7 ITN-network program NICHE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coherent vector beams with involved states of polarization (SOP) are widespread in the literature, having applications in laser processing, super-resolution imaging and particle trapping. We report novel vector beams obtained by transforming a Gaussian beam passing through a biaxial crystal, by means of the conical refraction phenomenon. We analyze both experimentally and theoretically the SOP of the different vector beams generated and demonstrate that the SOP of the input beam can be used to control both the shape and the SOP of the transformed beam. We also identify polarization singularities of such beams for the first time and demonstrate their control by the SOP of the input beam.