989 resultados para strain identification
Resumo:
The eukaryotic translation initiation factor 5A (eIF5A) is the only protein that contains hypusine [N-epsilon-(4-amino-2-hydroxybutyl)lysine], which is required for its activity. Hypusine is formed by post-translational modification of one specific lysine (Lys50 for human eIF5A) by deoxyhypusine synthase and deoxyhypusine hydroxylase. To investigate the features of eIF5A required for its activity, we generated 49 mutations in human eIF5A-1, with a single amino acid substitution at the highly conserved residues or with N-terminal or C-terminal truncations, and tested mutant proteins in complementing the growth of a Saccharomyces cerevisiae eIF5A null strain. Growth-supporting activity was abolished in only a few mutant eIF5As (K47D, G49A, K50A, K50D, K50I, K50R, G52A and K55A), with substitutions at or near the hypusine modification site or with truncation of 21 amino acids from either the N-terminus or C-terminus. The inactivity of the Lys50 substitution proteins is obviously due to lack of deoxyhypusine modification. In contrast, K47D and G49A were effective substrates for deoxyhypusine synthase, yet failed to support growth, suggesting critical roles of Lys47 and Gly49 in eIF5A activity, possibly in its interaction with effector(s). By use of a UBHY-R strain harboring genetically engineered unstable eIF5A, we present evidence for the primary function of eIF5A in protein synthesis. When selected eIF5A mutant proteins were tested for their activity in protein synthesis, a close correlation was observed between their ability to enhance protein synthesis and growth, lending further support for a central role of eIF5A in translation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study investigated the possible intrafamilial similarity of mutans streptococcal strains in some families with a child with Down syndrome using chromosomal DNA fingerprinting. The isolates were genotyped using arbitrarily primed polymerase chain reaction with the OPA 02 and OPA 03 primers. The results showed that five children with Down syndrome harbored mutans streptococci genotypes different from those of their mothers. A matching of genotypes was observed within the control pair (mother/child without Down syndrome). After six months, new samples were collected from all participants. Analysis showed that samples from children with Down syndrome were colonized by a new strain of Streptococcus mutans that did not match the previously collected one. The results suggest the S. mutans indigenous bacteria change more than once in children with Down syndrome.
Resumo:
The development of fast, inexpensive, and reliable tests to identify nontuberculous mycobacteria (NTM) is needed. Studies have indicated that the conventional identification procedures, including biochemical assays, are imprecise. This study evaluated a proposed alternative identification method in which 83 NTM isolates, previously identified by conventional biochemical testing and in-house M. avium IS1245-PCR amplification, were submitted to the following tests: thin-layer chromatography (TLC) of mycolic acids and PCR-restriction enzyme analysis of hsp65 (PRA). High-performance liquid chromatography (HPLC) analysis of mycolic acids and Southern blot analysis for M. avium IS1245 were performed on the strains that evidenced discrepancies on either of the above tests. Sixty-eight out of 83 (82%) isolates were concordantly identified by the presence of IS1245 and PRA and by TLC mycolic acid analysis. Discrepant results were found between the phenotypic and molecular tests in 12/83 (14.4%) isolates. Most of these strains were isolated from non-sterile body sites and were most probably colonizing in the host tissue. While TLC patterns suggested the presence of polymycobacterial infection in 3/83 (3.6%) cultures, this was the case in only one HPLC-tested culture and in none of those tested by PRA. The results of this study indicated that, as a phenotypic identification procedure, TLC mycolic acid determination could be considered a relatively simple and cost-effective method for routine screening of NTM isolates in mycobacteriology laboratory practice with a potential for use in developing countries. Further positive evidence was that this method demonstrated general agreement on MAC and M. simiae identification, including in the mixed cultures that predominated in the isolates of the disseminated infections in the AIDS patients under study. In view of the fact that the same treatment regimen is recommended for infections caused by these two species, TLC mycolic acid analysis may be a useful identification tool wherever molecular methods are unaffordable.
Resumo:
Oxacillin-resistant Staphylococcus aureus represents a serious problem in hospitals worldwide, increasing infected patients' mortality and morbidity and raising treatment costs and internment time. In this study, the results of using the Multiplex PCR technique to amplify fragments of the genes femA (specific-species), mecA (oxacillin resistance) and ileS-2 (mupirocin resistance) were compared with those of tests conventionally used to identify S. aureus isolates and ascertain their resistance to drugs. Fifty S. aureus strains were isolated from patients receiving treatment at UNOESTE University Hospital in Presidente Prudente, SP, Brazil. The 686 bp fragment corresponding to the gene femA was amplified and detected in all the isolates. On the other hand, the 310 bp fragment corresponding to the mecA gene was amplified in 29 (58%) of the isolates. All of the isolates showed sensitivity to mupirocin in the agar diffusion test, which was corroborated by the lack of any amplicon of the 456 bp fragment corresponding to the ileS-2 gene, in the PCR bands. The conventional tests to identify S. aureus and detect resistance to oxacillin and mupirocin showed 100% agreement with the PCR Multiplex results. The use of techniques for rapid and accurate identification of bacteria and assessment of their resistance may be valuable in the control of infection by resistant strains, allowing the rapid isolation and treatment of an infected patient. However, the results demonstrate that traditional phenotypic tests are also reliable, though they take more time.
Resumo:
Inteins are coding sequences that are transcribed and translated with flanking sequences and then are excised by an autocatalytic process. There are two types of inteins in fungi, mini-inteins and full-length inteins, both of which present a splicing domain containing well-conserved amino acid sequences. Full-length inteins also present a homing endonuclease domain that makes the intein a mobile genetic element. These parasitic genetic elements are located in highly conserved genes and may allow for the differentiation of closely related species of the Candida parapsilosis (psilosis) complex. The correct identification of the three psilosis complex species C. parapsilosis, Candida metapsilosis, and Candida orthopsilosis is very important in the clinical setting for improving antifungal therapy and patient care. In this work, we analyzed inteins that are present in the vacuolar ATPase gene VMA and in the threonyl-tRNA synthetase gene ThrRS in 85 strains of the Candida psilosis complex (46 C. parapsilosis, 17 C. metapsilosis, and 22 C. orthopsilosis). Here, we describe an accessible and accurate technique based on a single PCR that is able to differentiate the psilosis complex based on the VMA intein. Although the ThrRS intein does not distinguish the three species of the psilosis complex by PCR product size, it can differentiate them by sequencing and phylogenetic analysis. Furthermore, this intein is unusually present as both mini- and full-length forms in C. orthopsilosis. Additional population studies should be performed to address whether this represents a common intraspecific variability or the presence of subspecies within C. orthopsilosis. Copyright © 2013, American Society for Microbiology. All Rights Reserved.
Resumo:
Fungi isolated from marine organisms have been shown to produce several interesting secondary metabolites with important biological activities. Such chemical diversity may be associated to environmental stress conditions and may represent an important source of NCE for bioprospection. Quinolactins belong to a rare fungi-alkaloid class with a unique N-methyl-quinolone moiety fused to a lactam ring and present several bioactivities1. Fungi strain Dm1 was isolated from red alga Dichotomaria marginata, collected from Brazil SE coast, and was grown in sterile rice solid media at 26oC 2, which was then extracted with MeOH. The MeCN fr. from the MeOH extract was chromatographed over Sephadex LH-20 and fr. 4 afforded quinolactin (QL) alkaloids B1, B2 and A, whereas fr. 5 afforded quinolactin D1 after purification by HPLC-DAD. Structural determination of pure compounds was based on HRMS, UV, and NMR spectral analyses, in addition to comparison with literature data and Antimarin® databank. UV data indicated the presence of similar chromophores with λmax at ca. 247 and 320nm. HRMS and tandem MS analyses using both negative and positive ion modes for the isolated compounds indicated their molecular formula and structural features, as for QL B1: C15H16O2N2 [M+H 257], which showed one fragment at m/z 214 [-CHNO]; QL B2: C15H16O3N2 [M+H 273], with product ions at m/z 230 [-CHNO.] and m/z 186 [-C4H9NO.]; for QL A: C16H18N2O2 [M+H 271], which presented one ion at m/z 214, due to loss of fragment (-C4H9) from the molecular ion; and for QL D1: C16H18N2O3 [M+H 287], with product ions at m/z 186 [-CHNO] and m/z 230 [-C4H9]. Such data suggested fragmentation proposals, e.g. for Quinolactin B1 (Fig. 1), which confirmed the structures of the isolated quinolactins, and may represent an important contribution for the sustainable exploration of marine biodiversity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pathogenic strains of Escherichia coli are the most common bacteria associated with urinary tract infections in both humans and companion animals. Standard biochemical tests may be useful in demonstrating detailed phenotypical characteristics of these strains. Thirteen strains of E. coli isolated from dogs with UTIs were submitted to biochemical tests, serotyping for O and H antigens and antimicrobial resistance testing. Furthermore, the presence of papC, sfa, and afa genes was evaluated by PCR, and genetic relationships were established using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). The antimicrobial that showed the highest resistance rate among the isolates was nalidixic acid (76.9%), followed by cephalotin (69.2%), sulfamethoxazole + trimethoprim (61.5%), tetracycline (61.5%), streptomycin (53.8%), ciprofloxacin (53.8%), ampicillin (46.2%), gentamicin (30.8%) and chloramphenicol (23.1%). No isolate was resistant either to meropenem or nitrofurantoin. Among the five clusters that were identified using ERIC-PCR, one cluster (A) had only one strain, which belonged to a serotype with zoonotic potential (O6:H31) and showed the genes papC+, sfa+, afa-. Strains with the genes papC-, sfa+, afa- were found in two other clusters (C and D), whereas all strains in clusters B and E possessed papC-, sfa-, afa- genes. Sucrose and raffinose phenotypic tests showed some ability in discriminating clusters A, B and C from clusters D and E.
Resumo:
The magnetic properties (first-order reversal curves, ferromagnetic resonance and decomposition of saturation remanent magnetization acquisition) of Magnetovibrio blakemorei, a cultivated marine magnetotactic bacterium, differ from those of other magnetotactic species from sediments deposited in lakes and marine habitats previously studied. This finding suggests that magnetite produced by some magnetotactic bacteria retains magnetic properties in relation to the crystallographic structure of the magnetic phase produced and thus might represent a magnetic fingerprint for a specific magnetotactic bacterium. The use of this fingerprint is a non-destructive, new technology that might allow for the identification and presence of specific species or types of magnetotactic bacteria in certain environments such as sediments.
Resumo:
We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure-activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5a-h and 6a-h. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC50 of 9.5 +/- 2.8 and 3.5 +/- 1.8 mu M for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC50 of 11.3 +/- 2.8 mu M. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50 mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background The genetic mechanisms underlying interindividual blood pressure variation reflect the complex interplay of both genetic and environmental variables. The current standard statistical methods for detecting genes involved in the regulation mechanisms of complex traits are based on univariate analysis. Few studies have focused on the search for and understanding of quantitative trait loci responsible for gene × environmental interactions or multiple trait analysis. Composite interval mapping has been extended to multiple traits and may be an interesting approach to such a problem. Methods We used multiple-trait analysis for quantitative trait locus mapping of loci having different effects on systolic blood pressure with NaCl exposure. Animals studied were 188 rats, the progenies of an F2 rat intercross between the hypertensive and normotensive strain, genotyped in 179 polymorphic markers across the rat genome. To accommodate the correlational structure from measurements taken in the same animals, we applied univariate and multivariate strategies for analyzing the data. Results We detected a new quantitative train locus on a region close to marker R589 in chromosome 5 of the rat genome, not previously identified through serial analysis of individual traits. In addition, we were able to justify analytically the parametric restrictions in terms of regression coefficients responsible for the gain in precision with the adopted analytical approach. Conclusion Future work should focus on fine mapping and the identification of the causative variant responsible for this quantitative trait locus signal. The multivariable strategy might be valuable in the study of genetic determinants of interindividual variation of antihypertensive drug effectiveness.
Resumo:
Pathogenic strains of Escherichia coli are the most common bacteria associated with urinary tract infections in both humans and companion animals. Standard biochemical tests may be useful in demonstrating detailed phenotypical characteristics of these strains. Thirteen strains of E. coli isolated from dogs with UTIs were submitted to biochemical tests, serotyping for O and H antigens and antimicrobial resistance testing. Furthermore, the presence of papC, sfa, and afa genes was evaluated by PCR, and genetic relationships were established using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). The antimicrobial that showed the highest resistance rate among the isolates was nalidixic acid (76.9%), followed by cephalotin (69.2%), sulfamethoxazole + trimethoprim (61.5%), tetracycline (61.5%), streptomycin (53.8%), ciprofloxacin (53.8%), ampicillin (46.2%), gentamicin (30.8%) and chloramphenicol (23.1%). No isolate was resistant either to meropenem or nitrofurantoin. Among the five clusters that were identified using ERIC-PCR, one cluster (A) had only one strain, which belonged to a serotype with zoonotic potential (O6:H31) and showed the genes papC+, sfa+, afa-. Strains with the genes papC-, sfa+, afa- were found in two other clusters (C and D), whereas all strains in clusters B and E possessed papC-, sfa-, afa- genes. Sucrose and raffinose phenotypic tests showed some ability in discriminating clusters A, B and C from clusters D and E.
Resumo:
The inherent stochastic character of most of the physical quantities involved in engineering models has led to an always increasing interest for probabilistic analysis. Many approaches to stochastic analysis have been proposed. However, it is widely acknowledged that the only universal method available to solve accurately any kind of stochastic mechanics problem is Monte Carlo Simulation. One of the key parts in the implementation of this technique is the accurate and efficient generation of samples of the random processes and fields involved in the problem at hand. In the present thesis an original method for the simulation of homogeneous, multi-dimensional, multi-variate, non-Gaussian random fields is proposed. The algorithm has proved to be very accurate in matching both the target spectrum and the marginal probability. The computational efficiency and robustness are very good too, even when dealing with strongly non-Gaussian distributions. What is more, the resulting samples posses all the relevant, welldefined and desired properties of “translation fields”, including crossing rates and distributions of extremes. The topic of the second part of the thesis lies in the field of non-destructive parametric structural identification. Its objective is to evaluate the mechanical characteristics of constituent bars in existing truss structures, using static loads and strain measurements. In the cases of missing data and of damages that interest only a small portion of the bar, Genetic Algorithm have proved to be an effective tool to solve the problem.