961 resultados para state space model
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting models as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output growth and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
In an effort to meet its obligations under the Kyoto Protocol, in 2005 the European Union introduced a cap-and-trade scheme where mandated installations are allocated permits to emit CO2. Financial markets have developed that allow companies to trade these carbon permits. For the EU to achieve reductions in CO2 emissions at a minimum cost, it is necessary that companies make appropriate investments and policymakers design optimal policies. In an effort to clarify the workings of the carbon market, several recent papers have attempted to statistically model it. However, the European carbon market (EU ETS) has many institutional features that potentially impact on daily carbon prices (and associated nancial futures). As a consequence, the carbon market has properties that are quite different from conventional financial assets traded in mature markets. In this paper, we use dynamic model averaging (DMA) in order to forecast in this newly-developing market. DMA is a recently-developed statistical method which has three advantages over conventional approaches. First, it allows the coefficients on the predictors in a forecasting model to change over time. Second, it allows for the entire fore- casting model to change over time. Third, it surmounts statistical problems which arise from the large number of potential predictors that can explain carbon prices. Our empirical results indicate that there are both important policy and statistical bene ts with our approach. Statistically, we present strong evidence that there is substantial turbulence and change in the EU ETS market, and that DMA can model these features and forecast accurately compared to conventional approaches. From a policy perspective, we discuss the relative and changing role of different price drivers in the EU ETS. Finally, we document the forecast performance of DMA and discuss how this relates to the efficiency and maturity of this market.
Resumo:
Block factor methods offer an attractive approach to forecasting with many predictors. These extract the information in these predictors into factors reflecting different blocks of variables (e.g. a price block, a housing block, a financial block, etc.). However, a forecasting model which simply includes all blocks as predictors risks being over-parameterized. Thus, it is desirable to use a methodology which allows for different parsimonious forecasting models to hold at different points in time. In this paper, we use dynamic model averaging and dynamic model selection to achieve this goal. These methods automatically alter the weights attached to different forecasting model as evidence comes in about which has forecast well in the recent past. In an empirical study involving forecasting output and inflation using 139 UK monthly time series variables, we find that the set of predictors changes substantially over time. Furthermore, our results show that dynamic model averaging and model selection can greatly improve forecast performance relative to traditional forecasting methods.
Resumo:
In this paper we develop methods for estimation and forecasting in large timevarying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also draw on ideas from the dynamic model averaging literature and extend the TVP-VAR so that its dimension can change over time. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output, and interest rates demonstrates the feasibility and usefulness of our approach.
Resumo:
This paper discusses the challenges faced by the empirical macroeconomist and methods for surmounting them. These challenges arise due to the fact that macroeconometric models potentially include a large number of variables and allow for time variation in parameters. These considerations lead to models which have a large number of parameters to estimate relative to the number of observations. A wide range of approaches are surveyed which aim to overcome the resulting problems. We stress the related themes of prior shrinkage, model averaging and model selection. Subsequently, we consider a particular modelling approach in detail. This involves the use of dynamic model selection methods with large TVP-VARs. A forecasting exercise involving a large US macroeconomic data set illustrates the practicality and empirical success of our approach.
Resumo:
This note describes how the Kalman filter can be modified to allow for thevector of observables to be a function of lagged variables without increasing the dimensionof the state vector in the filter. This is useful in applications where it is desirable to keepthe dimension of the state vector low. The modified filter and accompanying code (whichnests the standard filter) can be used to compute (i) the steady state Kalman filter (ii) thelog likelihood of a parameterized state space model conditional on a history of observables(iii) a smoothed estimate of latent state variables and (iv) a draw from the distribution oflatent states conditional on a history of observables.
Resumo:
Statistical models allow the representation of data sets and the estimation and/or prediction of the behavior of a given variable through its interaction with the other variables involved in a phenomenon. Among other different statistical models, are the autoregressive state-space models (ARSS) and the linear regression models (LR), which allow the quantification of the relationships among soil-plant-atmosphere system variables. To compare the quality of the ARSS and LR models for the modeling of the relationships between soybean yield and soil physical properties, Akaike's Information Criterion, which provides a coefficient for the selection of the best model, was used in this study. The data sets were sampled in a Rhodic Acrudox soil, along a spatial transect with 84 points spaced 3 m apart. At each sampling point, soybean samples were collected for yield quantification. At the same site, soil penetration resistance was also measured and soil samples were collected to measure soil bulk density in the 0-0.10 m and 0.10-0.20 m layers. Results showed autocorrelation and a cross correlation structure of soybean yield and soil penetration resistance data. Soil bulk density data, however, were only autocorrelated in the 0-0.10 m layer and not cross correlated with soybean yield. The results showed the higher efficiency of the autoregressive space-state models in relation to the equivalent simple and multiple linear regression models using Akaike's Information Criterion. The resulting values were comparatively lower than the values obtained by the regression models, for all combinations of explanatory variables.
Resumo:
Available empirical evidence regarding the degree of symmetry between European economies in the context of Monetary Unification is not conclusive. This paper offers new empirical evidence concerning this issue related to the manufacturing sector. Instead of using a static approach as most empirical studies do, we analyse the dynamic evolution of shock symmetry using a state-space model. The results show a clear reduction of asymmetries in terms of demand shocks between 1975 and 1996, with an increase in terms of supply shocks at the end of the period.
Resumo:
Ilmastonmuutos ja fossiilisten polttoaineiden ehtyminen ovat edesauttaneet uusiutuvien energialähteiden tutkimusta huomattavasti. Lisäksi alati kasvava sähköenergian tarve lisää hajautetun sähköntuotannon ja vaihtoehtoisten energialähteiden kiinnostavuutta. Yleisimpiä hajautetun sähköntuotannon energialähteitä ovat tuulivoima, aurinkovoima ja uutena tulokkaana polttokennot. Polttokennon kytkeminen sähköverkkoon vaatii tehoelektroniikkaa, ja yleensä yksinkertaisessa polttokennosovelluksessa polttokenno kytketään galvaanisesti erottavan yksisuuntaisen DC/DC-hakkurin ja vaihtosuuntaajan kanssa sarjaan. Polttokennon rinnalla voidaan käyttää akkua tasaamaan polttokennon syöttämää jännitettä, jolloin akun ja polttokennon väliin tarvitaan kaksisuuntainen DC/DC-hakkuri, joka pystyy siirtämään energiaa molempiin suuntiin. Tässä diplomityössä on esitetty kaksisuuntaisen DC/DC-hakkurin tilayhtälökeskiarvoistusmenetelmään perustuva malli sekä mallin perusteella toteutettu virtasäätö. Tutkittava hakkuritopologia on kokosilta-tyyppinen boost-hakkuri, ja säätömenetelmä keskiarvovirtasäätö. Työn tuloksena syntyi tilayhtälömalli kaksisuuntaiselle FB boost -hakkurille sekä sen tulokelan virran säätämiseen soveltuva säädin. Säädin toimii normaalitilanteissa hyvin, mutta erikoistilanteissa, kuten hakkurin tulojännitteen äkillisessä muutostilanteessa, vaadittaisiin tehokkaampi säädin, jolla saavutettaisiin nopeampi nousuaika ilman ylitystä ja oskillointia.
Resumo:
Time series analysis has gone through different developmental stages before the current modern approaches. These can broadly categorized as the classical time series analysis and modern time series analysis approach. In the classical one, the basic target of the analysis is to describe the major behaviour of the series without necessarily dealing with the underlying structures. On the contrary, the modern approaches strives to summarize the behaviour of the series going through its underlying structure so that the series can be represented explicitly. In other words, such approach of time series analysis tries to study the series structurally. The components of the series that make up the observation such as the trend, seasonality, regression and disturbance terms are modelled explicitly before putting everything together in to a single state space model which give the natural interpretation of the series. The target of this diploma work is to practically apply the modern approach of time series analysis known as the state space approach, more specifically, the dynamic linear model, to make trend analysis over Ionosonde measurement data. The data is time series of the peak height of F2 layer symbolized by hmF2 which is the height of high electron density. In addition, the work also targets to investigate the connection between solar activity and the peak height of F2 layer. Based on the result found, the peak height of the F2 layer has shown a decrease during the observation period and also shows a nonlinear positive correlation with solar activity.
Resumo:
This paper describes the SIMULINK implementation of a constrained predictive control algorithm based on quadratic programming and linear state space models, and its application to a laboratory-scale 3D crane system. The algorithm is compatible with Real Time. Windows Target and, in the case of the crane system, it can be executed with a sampling period of 0.01 s and a prediction horizon of up to 300 samples, using a linear state space model with 3 inputs, 5 outputs and 13 states.
Resumo:
We provide a system identification framework for the analysis of THz-transient data. The subspace identification algorithm for both deterministic and stochastic systems is used to model the time-domain responses of structures under broadband excitation. Structures with additional time delays can be modelled within the state-space framework using additional state variables. We compare the numerical stability of the commonly used least-squares ARX models to that of the subspace N4SID algorithm by using examples of fourth-order and eighth-order systems under pulse and chirp excitation conditions. These models correspond to structures having two and four modes simultaneously propagating respectively. We show that chirp excitation combined with the subspace identification algorithm can provide a better identification of the underlying mode dynamics than the ARX model does as the complexity of the system increases. The use of an identified state-space model for mode demixing, upon transformation to a decoupled realization form is illustrated. Applications of state-space models and the N4SID algorithm to THz transient spectroscopy as well as to optical systems are highlighted.
Resumo:
A quasi-optical deembedding technique for characterizing waveguides is demonstrated using wide-band time-resolved terahertz spectroscopy. A transfer function representation is adopted for the description of the signal in the input and output port of the waveguides. The time-domain responses were discretized and the waveguide transfer function was obtained through a parametric approach in the z-domain after describing the system with an AutoRegressive with eXogenous input (ARX), as well as with a state-space model. Prior to the identification procedure, filtering was performed in the wavelet domain to minimize both signal distortion, as well as the noise propagating in the ARX and subspace models. The optimal filtering procedure used in the wavelet domain for the recorded time-domain signatures is described in detail. The effect of filtering prior to the identification procedures is elucidated with the aid of pole-zero diagrams. Models derived from measurements of terahertz transients in a precision WR-8 waveguide adjustable short are presented.
Resumo:
The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.