989 resultados para spatial correlation
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work structural features of anionic microemulsions, containing the pharmaceutical biocompatible components soya phosphatidylcholine (SPC), eumulgin HRE 40 (EU) and sodium oleate (SO) as surfactant, cholesterol (CHO) as oil phase and aqueous buffer were studied. Microemulsions were formulated with and without the antitumor drug doxorubicin (DOX). The various microstructures characterized in the pseudo-temary phase diagram were analyzed by polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) as well as by their ability to incorporate and release DOX. The experimental results demonstrated a correlation between the composition, the structural features and drug delivery. It was found that at higher cholesterol contents, the crystallization of CHO polymorph phases changed the mobility of DOX molecules. Droplets were formed with short-range spatial correlation from a microemulsion (ME) with a low surfactant:oil ratio. More ordered structures with lamellar arrangements formed by the increasing of the CHO proportions in the formulation may be due to CHO crystallization. The in vitro release of DOX showed that the presence of a high content of crystalline CHO prolongs the release of DOX from ME. The retention of DOX in the internal oil phase of the ME may modulate the drug release for a prolonged time. These results clearly demonstrate the potential of ME as a drug-delivery system. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Depending on the composition, the mixture of surfactant, oil and water, may form supramolecular aggregates with different structures which can significantly influence the drug release. In this work several microemulsion (ME) systems containing soya phosphatidylcholine (SPC) and eumulgin HRE40 (TM) (EU) as surfactant, cholesterol (O) as oil phase, and ultra-pure water as an aqueous phase were studied. MEs with and without the antitumoral drug doxorubicin (DOX) were prepared. The microstructures of the systems were characterized by photon correlation spectroscopy, rheological behavior, polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). The results reveal that the diameter of the oil droplets was dependent on the surfactant (S) amount added to formulations. The apparent viscosity was dependent on the O/S ratio. High O/S ratio leads to the crystallization of cholesterol polymorphs phases which restricts the mobility of the DOX molecules into the ME structure. Droplets with short-range spatial correlation were formed from the ME with the low O/S ratio. The increase of the cholesterol fraction in the O/S mixture leads to the formation of ordered structures with lamellar arrangements. These different structural organizations directly influenced the drug release profiles. The in vitro release assay showed that the increase of the O/S ratio in the formulations inhibited the constant rate of DOX release. Since the DOX release ratio was directly dependent on the ratio of O/S following an exponential decay profile, this feature can be used to control the DOX release from the ME formulations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A distribuição granulométrica do solo exerce grande influência na produtividade vegetal. No ano agrícola de 2002/2003, foram analisados atributos da planta: produtividade de grãos (PG) e da palha (PP) do feijoeiro; e do solo: teores de argila, silte e areia de um Latossolo Vermelho distroférrico sob plantio direto, do Campus Experimental da Faculdade de Engenharia de Ilha Solteira/UNESP, em Selvíria (MS). O objetivo foi analisar a variabilidade dos atributos pesquisados, de forma a caracterizar suas dependências espaciais e as correlações, linear e espacial, entre eles. Foi instalada uma malha experimental para coleta dos dados, com 135 pontos amostrais, distribuídos numa área total de 8.000 m² (160 x 50 m). A variabilidade dos dados foi baixa para o teor de argila, média para os teores de silte e areia e alta para PP e PG. A maioria dos atributos apresentou moderada dependência espacial, com alcance entre 19,8 m (silte) e 103,1 m (areia) e de 29,8 m para a PG. Foi observada evidente correlação espacial entre todos os que apresentaram, dois a dois, os maiores coeficientes de correlação; entretanto, entre aqueles que apresentaram os menores, os dados sugeriram, em alguns casos, também haver concordante correlação espacial.
Resumo:
A resistência mecânica à penetração do solo exerce grande influência sobre o crescimento e desenvolvimento vegetal, uma vez que o crescimento das raízes e o rendimento das culturas variam de forma inversamente proporcional ao seu valor. Por outro lado, a matéria orgânica e o pH do solo também são atributos relevantes ao crescimento das plantas, pois estão diretamente ligados à disponibilidade de nutrientes do solo. No ano agrícola 2005/2006, na Fazenda Experimental de Ensino e Pesquisa da Faculdade de Engenharia/UNESP, município de Selvíria, MS (22 º 23 ' de latitude S; 51 º 27 ' de longitude W), em um cultivo de Eucalyptus camaldulensis, foram analisados: (a) características dendrométricas da planta: volume de madeira (VOL), perímetro à altura do peito (PAP) e altura (ALT); e (b) atributos do solo em profundidade: resistência mecânica à penetração (RP), umidade gravimétrica (UG), matéria orgânica (MO) e o pH, num Latossolo Vermelho distrófico do Cerrado brasileiro. O objetivo foi estudar as correlações lineares e espaciais entre essas variáveis, buscando determinar indicadores de qualidade do solo para o eucalipto. Dados do solo e da planta foram coletados em uma malha geoestatística com 122 pontos amostrais, numa área de 1,98 ha. Os atributos da planta apresentaram média e alta variabilidade dos dados, ao passo que os do solo mostraram variabilidade baixa, média e alta. Os atributos VOL, PAP, ALT, RP, UG, MO e o pH não variaram aleatoriamente, seguindo padrões espaciais bem definidos, com alcances entre 17 e 169 m. As correlações lineares simples entre as características da planta e os atributos do solo foram baixas, porém significativas entre os pares VOL vs RP1, VOL vs RP5, VOL vs MO2 e VOL vs pH1. do ponto de vista espacial, ocorreu significativa variação inversa do VOL com a RP5 e o pH1. O pH do solo, amostrado de 0-0,15 m de profundidade, quando destinado à estimativa da produtividade de madeira do Eucalyptus camaldulensis, apresentou-se como potente indicador da qualidade do solo estudado de Selvíria.
Resumo:
A distribuição granulométrica do solo, por possuir estreita relação com a capacidade de retenção e disponibilidade de água e nutrientes, é um fator de grande influência na produtividade vegetal. O objetivo foi estudar a variabilidade e as correlações lineares e espaciais entre os atributos da planta e do solo. Foi instalada uma malha de amostragem, para a coleta de dados do solo e planta, contendo 125 pontos, em uma área de 2500 m², no ano agrícola de 2005, no município de Pereira Barreto (SP). Foram analisadas a produtividade de forragem do milho outonal (MSF) no sistema plantio direto irrigado e as frações granulométricas areia (AR), silte (SI) e argila (AG) em profundidade, em Latossolo Vermelho Distrófico. Nos atributos estudados, observou-se variabilidade dos dados entre média e baixa, e espaciais não variaram aleatoriamente, seguindo padrões bem definidos, com alcances entre 8,5 e 46,8 metros. Não houve correlação linear consistente entre o atributo da planta com os do solo, porém houve uma apreciável correlação espacial entre a MSF e a argila de 0,20-0,30 m (AG3).
Resumo:
The effect of concentration on the structure of SnO2 colloids in aqueous suspension, on their spatial correlation and on the gelation process was studied by small angle x-ray scattering (SAXS). The shape of the experimental SAXS curves varies with suspension concentration. For diluted suspensions ([SnO2] less than or equal to 0.13 mol L-1), SAXS results indicate the presence of colloidal fractal aggregates with an internal correlation length xi congruent to 20 Angstrom, without any noticeable spatial correlation between them. This suggests that the aggregates are spatially arranged without any significant interaction like in ideal gas structures. For higher concentrations ([SnO2] = 0.16, 0.32, and 0.64 mol L-1), the colloidal aggregates are larger (xi = 24 Angstrom) and exhibit a certain degree of spatial correlation between them. The pair correlation function corresponding to the sol with the highest concentration (0.92 mol L-1) reveals a rather strong short range order between aggregates, characteristic of a fluid-like structure, with an average nearest-neighbor distance between aggregates d(1) = 125 Angstrom and an average second-neighbor distance d(2) = 283 Angstrom. The pair distribution function remains essentially invariant during the sol-gel transition, suggesting that gelation involves the formation of a few points of connection between the aggregates resulting in a gel network constituted by essentially linear chains of clusters..
Resumo:
This is a study of the structural transformations occurring in hybrid siloxane-polypropyleneglycol (PPG) nanocomposites, with different PPG molecular weight, along the drying process. The starting materials are wet gels obtained by the sol-gel procedure using as precursor the 3-(trietoxysilyl)propylisocyanate (IsoTrEOS) and polypropylenglycol bis(2-amino-propyl-ether) (NH2-PPG-NH2). The shrinkage and mass loss measurements were performed using a temperature-controlled chamber at 50 degreesC. The nanostructural evolution of samples during drying was studied in situ by small angle x-ray scattering (SAXS). The experimental results demonstrate that the drying process is highly dependent on the molecular weight of polymer. After the initial drying stage, the progressive emptying of pores leads to the formation of a irregular drying front in gels prepared from PPG of high molecular weight, like 4000 g/mol. As a consequence, an increase of the SAXS intensity due to the increase of electronic density contrast between siloxane clusters and polymeric matrix is observed. For hybrids containing PPG of low molecular weight, the pore emptying process is fast, leading to a regular drying front, without isolated nanopockets of solvents. SAXS intensity curves exhibit a maximum, which was associated to the existence of spatial correlation of the silica clusters embedded in the polymeric matrix. The spatial correlation is preserved during drying. These results also reveal that the structural transformation during drying is governed by capillary forces and depends on the entanglement of polymer chains.
Small-angle X-ray scattering study of sol-gel-derived siloxane-PEG and siloxane-PPG hybrid materials
Resumo:
Hybrid organic-inorganic two-phase nanocomposites of siloxane-poly(ethylene glycol) (SiO3/2-PEG) and siloxane-poly(propylene glycol) (SiO3/2-PPG) have been obtained by the sol-gel process. In these composites, nanometric siloxane heterogeneities are embedded in a polymeric matrix with covalent bonds in the interfaces. The structure of these materials was investigated in samples with different molecular weights of the polymer using the smalt-angle X-ray scattering (SAXS) technique. The SAXS spectra exhibit a well-defined peak that was attributed to the existence of a strong spatial correlation of siloxane clusters. LiClO4-doped siloxane-PEG and siloxane-PPG hybrids, which exhibit good ionic conduction properties, have also been studied as a function of the lithium concentration [O]/[Li], O being the oxygens of ether type. SAXS results allowed us to establish a structural model for these materials for different basic compositions and a varying [Li] content. The conclusion is consistent with that deduced from ionic conductivity measurements that exhibit a maximum for [O]/[Li] =15.
Resumo:
Hybrid transparent and flexible siloxane-polypropyleneglycol (PPG) materials with covalent bonds between the inorganic (siloxane) and organic (polymeric) phases were prepared by sol-gel process. In order to improve the quality of the mechanical properties of these materials, different amounts of methyltriethoxysilane (MTES) were added to the initial sol. The effect of MTES addition on the structure of the composites was studied by Small-Angle X-Ray Scattering (SAXS) and Si-29 Nuclear Magnetic Resonance (Si-29 NMR). In absence of MTES, SAXS spectra exhibit a peak that is assigned to spatial correlation due to short range order between the siloxane clusters embedded in the polymeric phase. The experimental results indicate that, for low MTES concentrations ([MTES]/[O] less than or equal to 0.8, O: ether-type oxygen of PPG), the silicon species resulting from hydrolysis and condensation of MTES fill the open spaces between polymeric chains, interacting with the ether-type oxygens. For larger MTES content ([MTES]/[O] greater than or equal to 0.8), the number of free ether-type oxygen sites avalaible for reaction with such silicon species is not large enough. Consequently, a fraction of silicon species resulting from MTES addition graft to siloxane clusters formed by hydrolysis and condensation of the hybrid precursor. For all MTES concentrations the condensation degree of the siloxane phase, determined from Si-29 NMR spectroscopy, is high (> 69%), as expected under neutral pH synthesis conditions.
Resumo:
The modelling of the local structure of sol-gel derived Eu3+-based organic/inorganic hybrids is reported, based on Small-Angle X-ray Scattering (SAXS), photoluminescence and mid-infrared spectroscopy. The hybrid matrix of these organically modified silicates, classed as di-ureasils and termed U(2000) and U(600), is formed by poly( oxyethylene) (POE) chains of variable length grafted to siloxane domains by means of urea cross-linkages. Europium triflate, Eu(CF3SO3)(3), was incorporated in the two di-ureasil matrices with compositions 400 greater than or equal ton greater than or equal to 10, n is the molar ratio of ether oxygens per Eu3+. The SAXS data for undoped hybrids (n=infinity) show the presence of a well-defined peak attributed to the existence of a liquid-like spatial correlation of siloxane rich domains embedded in the polymer matrix and located at the ends of the organic segments. The obtained siloxane particle gyration radius Rg(1) is around 5 Angstrom (error within 10%), whereas the interparticle distance d is 25 +/-2 Angstrom and 40 +/-2 Angstrom, for U(600) and U(2000), respectively. For the Eu3+-based nanocomposites the formation of a two-level hierarchical local structure is discerned. The primary level is constituted by strongly spatially correlated siloxane particles of gyration radius Rg(1) (4-6 and 3-8 Angstrom, errors within 5%, for U(600())n Eu(CF3SO3)(3), 200 greater than or equal ton greater than or equal to 40, and U(2000)(n)Eu(CF3SO3)(3), 400 greater than or equal ton greater than or equal to 40, respectively) forming large clusters of gyration radius Rg(2) (approximate to 75 +/- 10 Angstrom). The local coordination of Eu3+ in both di-ureasil series is described combining the SAXS, photoluminescence and mid-infrared results. In the di-ureasils containing long polymer chains, U(2000)(n)Eu(CF3SO3)(3), the cations interact exclusively with the carbonyl oxygens atoms of the urea bridges at the siloxane-POE interface. In the hybrids containing shorter chains, U(600)(n)Eu(CF3SO3)(3) with n ranging from 200 to 60, the Eu3+ ions interact solely with the ether-type oxygens of the polymer chains. Nevertheless, in this latter family of hybrids a distinct Eu3+ local site environment involving the urea cross-linkages is detected when the europium content is increased up to n=40.
Resumo:
New silica-polypropyleneglycol ormosils (organically modified silicates) with covalent bends between the organic (polymer) and inorganic (silica) phases have been prepared by the sol-gel process. Their structural evolution during sol formation, sol-gel transition, gel aging and drying has been studied in situ by small-angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and gels exhibit features expected from fractal objects. Clusters of size around 55 Angstrom with an initial fractal dimension D = 2.4 are formed in the sol. They are constituted of small primary silica particles chemically crosslinked at the end of the polymer chains. A strong liquid-like spatial correlation between the silica particles develops during drying due to the shrinkage of the polymeric network induced by water and ethanol evaporation. The continuous increase in SAXS intensity during drying, while the interparticle distance remains constant, is a consequence of the progressive growth of the dry fraction of the total volume. After drying, the gel structure consists of a rather compact arrangement of silica particles embedded in the polypropyleneglycol matrix.
Resumo:
The effect of lithium salt doping on the structure and ionic conduction properties of silica-polyethyleneglycol composites is reported. These materials, so called ormolytes (organically modified electrolytes), were obtained by the sol-gel process. They have chemical stability due to the covalent bonds between the inorganic (silica) and organic (polymer) phase. The structure of these hybrid materials was investigated by small-angle X-ray scattering (SAXS) as a function of lithium concentration [O]/[Li] (O being the oxygens of the ether type). The spectra have a well-defined peak attributed to the existence of a liquid-like spatial correlation of silica clusters. The ionic conductivity was studied by AC impedance spectroscopy and is maximum for [O]/[Li] = 15. This result is consistent with SAXS and thermo-mechanical analysis measurements and is due to the formation of cross-linking between the polymer chains for the larger lithium concentrations. These materials are solid, transparent, flexible and have an ionic conductivity up to 10(-4) S/cm. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper describes two solutions for systematic measurement of surface elevation that can be used for both profile and surface reconstructions for quantitative fractography case studies. The first one is developed under Khoros graphical interface environment. It consists of an adaption of the almost classical area matching algorithm, that is based on cross-correlation operations, to the well-known method of parallax measurements from stereo pairs. A normalization function was created to avoid false cross-correlation peaks, driving to the true window best matching solution at each region analyzed on both stereo projections. Some limitations to the use of scanning electron microscopy and the types of surface patterns are also discussed. The second algorithm is based on a spatial correlation function. This solution is implemented under the NIH Image macro programming, combining a good representation for low contrast regions and many improvements on overall user interface and performance. Its advantages and limitations are also presented.
Resumo:
The precision agriculture technologies such as the spatial variability of soil attributes have been widely studied mostly with sugarcane. Among these technologies have been recently highlighted the use of the vegetation index derived from remote sensing products, such as powerful tools indicating the development of vegetation. This study aimed to analyze the spatial variability of clay content, pH and phosphorus in an Oxisol in an area with sugarcane production, and correlate with the Normalized Difference Vegetation Index (NDVI). The georeferenced grid was created for the soil properties (clay, phosphorus and pH) and generated the maps of spatial variability. For these same sites were calculated the NDVI, in addition to mapping of this ratio, the evaluation of the spatial correlation between this and other studied properties. The clay and phosphorus content showed positive spatial correlation with the NDVI, while no spatial correlation was observed between NDVI and pH. The satellite images from the sensor ETM + Landsat were used to correlate to NDVI to observe the spatial variability of the studied attributes.