981 resultados para sociala band
Resumo:
We report the synthesis of a novel class of low band gap copolymers based on anacenaphtho[1,2-b]quinoxaline core and oligothiophene derivatives acting as the acceptor and the donor moieties, respectively. The optical properties of the copolymers were characterized by ultraviolet-visible spectroscopy while the electrochemical properties were determined by cyclic voltammetry. The band gap of these polymers was found to be in the range 1.8-2.0 eV as calculated from the optical absorption band edge. X-ray diffraction measurements show weak pi-pi stacking interactions between the polymer chains. The hole mobility of the copolymers was evaluated using field-effect transistor measurements yielding values in the range 10(-5)-10(-3) cm(2)/Vs.
Resumo:
Hexagonal Ge3N4 layer was prepared on Ge surface by in situ direct atomic source nitridation and it is promising buffer layer to grow GaN on Ge (111). The valence band offset (VBO) of GaN/Ge3N4/Ge heterojunctions is determined by X-ray photoemission spectroscopy. The valence band (VB) of Ge3N4 is found to be 0.38?+/-?0.04?eV above the GaN valance band and 1.14?+/-?0.04?eV below the Ge. The GaN/Ge3N4 and Ge3N4/Ge are found type-II and type-I heterojunctions, respectively. The exact measurements of the VBO and conduction band offset (CBO) are important for use of GaN/Ge3N4/Ge (111) heterosystems.
Resumo:
Amorphous thin film Ge15Te85-xSnx (1 <= x <= 5) and Ge17Te83-xSnx (1 <= x <= 4) switching devices have been deposited in sandwich geometry using a flash evaporation technique, with aluminum as the top and bottom electrodes. Electrical switching studies indicate that these films exhibit memory type electrical switching behavior. The switching fields for both the series of samples have been found to decrease with increase in Sn concentration, which confirms that the metallicity effect on switching fields/voltages, commonly seen in bulk glassy chalcogenides, is valid in amorphous chalcogenide thin films also. In addition, there is no manifestation of rigidity percolation in the composition dependence of switching fields of Ge15Te85-xSnx and Ge17Te83-xSnx amorphous thin film samples. The observed composition dependence of switching fields of amorphous Ge15Te85-xSnx and Ge17Te83-xSnx thin films has been understood on the basis of Chemically Ordered Network model. The optical band gap for these samples, calculated from the absorption spectra, has been found to exhibit a decreasing trend with increasing Sn concentration, which is consistent with the composition dependence of switching fields.
Resumo:
In this paper, we propose a physics-based simplified analytical model of the energy band gap and electron effective mass in a relaxed and strained rectangular 100] silicon nanowires (SiNWs). Our proposed formulation is based on the effective mass approximation for the nondegenerate two-band model and 4 x 4 Luttinger Hamiltonian for energy dispersion relation of conduction band electrons and the valence band heavy and light holes, respectively. Using this, we demonstrate the effect of the uniaxial strain applied along 100]-direction and a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along 001] followed by a uniaxial one along the 100]-direction, respectively, on both the band gap and the transport and subband electron effective masses in SiNW. Our analytical model is in good agreement with the extracted data using the extended-Huckel-method-based numerical simulations over a wide range of device dimensions and applied strain.
Resumo:
Ultra thin films of pure beta-Si3N4 (0001) were grown on Si (111) surface by exposing the surface to radio- frequency nitrogen plasma with a high content of nitrogen atoms. Using beta-Si3N4 layer as a buffer layer, GaN epilayers were grown on Si (111) substrate by plasma-assisted molecular beam epitaxy. The valence band offset (VBO) of GaN/beta-Si3N4/ Si heterojunctions is determined by X-ray photoemission spectroscopy. The VBO at the beta-Si3N4 /Si interface was determined by valence-band photoelectron spectra to be 1.84 eV. The valence band of GaN is found to be 0.41 +/- 0.05 eV below that of beta-Si3N4 and a type-II heterojunction. The conduction band offset was deduced to be similar to 2.36 eV, and a change of the interface dipole of 1.29 eV was observed for GaN/ beta-Si3N4 interface formation. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.
Resumo:
This paper reports the fabrication and characterization of an ultrafast laser written Er-doped chalcogenide glass buried waveguide amplifier; Er-doped GeGaS glass has been synthesized by the vacuum sealed melt quenching technique. Waveguides have been fabricated inside the 4 mm long sample by direct ultrafast laser writing. The total passive fiber-to-fiber insertion loss is 2.58 +/- 0.02 dB at 1600 nm, including a propagation loss of 1.6 +/- 0.3 dB. Active characterization shows a relative gain of 2.524 +/- 0.002 dB/cm and 1.359 +/- 0.005 dB/cm at 1541 nm and 1550 nm respectively, for a pump power of 500 mW at a wavelength of 980 nm. (C) 2012 Optical Society of America
Resumo:
The multiport network approach is extended to analyze the behavior of microstrip fractal antennas. The capacitively fedmicrostrip square ring antenna has the side opposite to the feed arm replaced with a fractal Minkowski geometry. Dual frequency operation is achieved by suitably choosing the indentation of this fractal geometry. The width of the two sides adjacent to this is increased to further control the resonant characteristics and the ratio of the two resonance frequencies of this antenna. The impedance matrix for the multiport network model of this antenna is simplified exploiting self-similarity of the geometry with greater accuracy and reduced analysis time. Experimentally validated results confirm utility of the approach in analyzing the input characteristics of similar multi-frequency fractal microstrip antennas with other fractal geometries.
Resumo:
We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.
Resumo:
This paper presents analysis and design of multilayer ultra wide band (UWB) power splitter suitable for wireless communications. An UWB power splitter is designed in suspended substrate stripline medium. The quarter wave transformer in the conventional Wilkinson power divider is replaced by broadside coupled lines to achieve tight coupling for broadband operation. The UWB power splitter is analyzed using circuit models of coupled lines and full wave simulator. Experimental results of 3dB power splitter designed using the proposed structure have been verified against the results from circuit simulation and full wave simulation. The return loss is better than 12 dB across the band 3.1GHz to 10.6GHz. Size of the power splitter is 30mm× 20mm×6.38mm.
Resumo:
Design of a dual band pass filter employing microstrip line with defected ground is presented in this paper. A dual band filter at 2.45GHz and 3.5GHz (covering WLAN and WiMAX) with 6% bandwidth has been designed at each frequency. Apertures in ground plane were used to improve the stop band rejection characteristics and coupling levels in the filter. Measured results of the experimental filter were compared against the simulation results for the purpose of validation.
Resumo:
The nontrivial electronic topology of a topological insulator is thus far known to display signatures in a robust metallic state at the surface. Here, we establish vibrational anomalies in Raman spectra of the bulk that signify changes in electronic topology: an E-g(2) phonon softens unusually and its linewidth exhibits an asymmetric peak at the pressure induced electronic topological transition (ETT) in Sb2Se3 crystal. Our first-principles calculations confirm the electronic transition from band to topological insulating state with reversal of parity of electronic bands passing through a metallic state at the ETT, but do not capture the phonon anomalies which involve breakdown of adiabatic approximation due to strongly coupled dynamics of phonons and electrons. Treating this within a four-band model of topological insulators, we elucidate how nonadiabatic renormalization of phonons constitutes readily measurable bulk signatures of an ETT, which will facilitate efforts to develop topological insulators by modifying a band insulator. DOI: 10.1103/PhysRevLett.110.107401
Resumo:
In this paper, we address a physics based closed form model for the energy band gap (E-g) and the transport electron effective mass in relaxed and strained 100] and 110] oriented rectangular Silicon Nanowire (SiNW). Our proposed analytical model along 100] and 110] directions are based on the k.p formalism of the conduction band energy dispersion relation through an appropriate rotation of the Hamiltonian of the electrons in the bulk crystal along 001] direction followed by the inclusion of a 4 x 4 Luttinger Hamiltonian for the description of the valance band structure. Using this, we demonstrate the variation in Eg and the transport electron effective mass as function of the cross-sectional dimensions in a relaxed 100] and 110] oriented SiNW. The behaviour of these two parameters in 100] oriented SiNW has further been studied with the inclusion of a uniaxial strain along the transport direction and a biaxial strain, which is assumed to be decomposed from a hydrostatic deformation along 001] with the former one. In addition, the energy band gap and the effective mass of a strained 110] oriented SiNW has also been formulated. Using this, we compare our analytical model with that of the extracted data using the nearest neighbour empirical tight binding sp(3)d(5)s* method based simulations and has been found to agree well over a wide range of device dimensions and applied strain. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the direct band-to-band tunneling (BTBT) in a reverse biased molybdenum disulfide (MoS2) nanoribbon p-n junction by analyzing the complex band structure obtained from semiempirical extended Huckel method under relaxed and strained conditions. It is demonstrated that the direct BTBT is improbable in relaxed monolayer nanoribbon; however, with the application of certain uniaxial tensile strain, the material becomes favorable for it. On the other hand, the relaxed bilayer nanoribbon is suitable for direct BTBT but becomes unfavorable when the applied uniaxial tensile or compressive strain goes beyond a certain limit. Considering the Wentzel-Kramers-Brillouin approximation, we evaluate the tunneling probability to estimate the tunneling current for a small applied reverse bias. Reasonably high tunneling current in the MoS2 nanoribbons shows that it can take advantage over graphene nanoribbon in future tunnel field-effect transistor applications.
Resumo:
In this paper, we propose a new sub-band approach to estimate the glottal activity. The method is based on the spectral harmonicity and the sub-band temporal properties of voiced speech. We propose a method to represent glottal excitation signal using sub-band temporal envelope. Instants of maximum glottal excitation or Glottal Closure Instants (GCI) are extracted from the estimated glottal excitation pattern and the result is compared with a standard GCI computation method, DYPSA [1]. The performance of the algorithm is also compared for the noisy signal and it is shown that the proposed method is less variant to GCI estimation under noisy conditions compared to DYPSA. The algorithm is evaluated on the CMU-ARCTIC database.