969 resultados para short interspersed nuclear elements (SINEs)
Resumo:
Estimation of creep and shrinkage are critical in order to compute loss of prestress with time in order to compute leak tightness and assess safety margins available in containment structures of nuclear power plants. Short-term creep and shrinkage experiments have been conducted using in-house test facilities developed specifically for the present research program on 35 and 45 MPa normal concrete and 25 MPa heavy density concrete. The extensive experimental program for creep, has cylinders subject to sustained levels of load typically for several days duration (till negligible strain increase with time is observed in the creep specimen), to provide the total creep strain versus time curves for the two normal density concrete grades and one heavy density concrete grade at different load levels, different ages at loading, and at different relative humidity’s. Shrinkage studies on prism specimen for concrete of the same mix grades are also being studied. In the first instance, creep and shrinkage prediction models reported in the literature has been used to predict the creep and shrinkage levels in subsequent experimental data with acceptable accuracy. While macro-scale short experiments and analytical model development to estimate time dependent deformation under sustained loads over long term, accounting for the composite rheology through the influence of parameters such as the characteristic strength, age of concrete at loading, relative humidity, temperature, mix proportion (cement: fine aggregate: coarse aggregate: water) and volume to surface ratio and the associated uncertainties in these variables form one part of the study, it is widely believed that strength, early age rheology, creep and shrinkage are affected by the material properties at the nano-scale that are not well established. In order to understand and improve cement and concrete properties, investigation of the nanostructure of the composite and how it relates to the local mechanical properties is being undertaken. While results of creep and shrinkage obtained at macro-scale and their predictions through rheological modeling are satisfactory, the nano and micro indenting experimental and analytical studies are presently underway. Computational mechanics based models for creep and shrinkage in concrete must necessarily account for numerous parameters that impact their short and long term response. A Kelvin type model with several elements representing the influence of various factors that impact the behaviour is under development. The immediate short term deformation (elastic response), effects of relative humidity and temperature, volume to surface ratio, water cement ratio and aggregate cement ratio, load levels and age of concrete at loading are parameters accounted for in this model. Inputs to this model, such as the pore structure and mechanical properties at micro/nano scale have been taken from scanning electron microscopy and micro/nano-indenting of the sample specimen.
Resumo:
The effect of incorporation of a centrally positioned Ac(6)c-Xxx segment where Xxx = (L)Val/(D)Val into a host oligopeptide composed of L-amino acid residues has been investigated. Studies of four designed octapeptides Boc-Leu-Phe-Val-Ac(6)c-Xxx-Leu-Phe-Val-OMe (Xxx = (D)Val 1, (L)Val 2) Boc-Leu-Val-Val-Ac(6)c-Xxx-Leu-Val-Val-OMe (Xxx = (D)Val 3, (L)Val 4) are reported. Diagnostic nuclear Overhouse effects characteristic of hairpin conformations are observed for Xxx = (D)Val peptides (1 and 3) while continuous helical conformation characterized by sequential NiH <-> Ni+1H NOEs are favored for Xxx = (L)Val peptides (2 and 4) in methanol solutions. Temperature co-efficient of NH chemical shifts are in agreement with distinctly different conformational preferences upon changing the configuration of the residue at position 5. Crystal structures of peptides 2 and 4 (Xxx = (L)Val) establish helical conformations in the solid state, in agreement with the structures deduced from NMR data. The results support the design principle that centrally positioned type I beta-turns may be used to nucleate helices in short peptides, while type I' beta-turns can facilitate folding into beta-hairpins.
Resumo:
Psoralea corylifolia (PC), a medicinal plant, is used in traditional medicine to treat diabetes. Purpose of the research was to examine the antidiabetic and antilipemic potential of PC and to determine the relationship between its antidiabetic potential and the trace elements present. Wistar rats (150-200 g) with fasting blood glucose (FBG) of 80-110 mg dl(-1)(sub-diabetic) and 150-200 mg dl(-1)(mild diabetic) were selected for the short term antidiabetic studies and severely diabetic rats (FBG > 300 mg dl(-1)) were chosen for the long term antidiabetic and hypolipemic studies of PC seed extract. Laser induced breakdown spectroscopy (LIBS) was used to detect trace elements in the PC extract and the intensity ratios of trace elements were estimated. The dose of 250 mg kg(-1) of PC extract was found to be the most effective in lowering blood glucose level (BGL) of normal, sub, mild and severely diabetic rats during FBG and glucose tolerance test (GTT) studies. Lipid profile studies on severely diabetic rats showed substantial reduction in total cholesterol, triglycerides, very low density lipoprotein, and low density lipoprotein and an increase in the total protein, body weight, high density lipoprotein, and hemoglobin after 28 days of treatment. Significant reduction in urine sugar and protein levels was also observed. LIBS analysis of the PC extract revealed the presence of Mg, Si, Na, K, Ca, Zn and Cl. The study validates the traditional use of PC in the treatment of diabetes and confirms its antilipemic potential. The antidiabetic activity of PC extract may partly be due to the presence of appreciable amounts of insulin potentiating elements like Mg, Ca, and K.
Resumo:
In the first part of this thesis, experiments utilizing an NMR phase interferometric concept are presented. The spinor character of two-level systems is explicitly demonstrated by using this concept. Following this is the presentation of an experiment which uses this same idea to measure relaxation times of off-diagonal density matrix elements corresponding to magnetic-dipole-forbidden transitions in a ^(13)C-^1H, AX spin system. The theoretical background for these experiments and the spin dynamics of the interferometry are discussed also.
The second part of this thesis deals with NMR dipolar modulated chemical shift spectroscopy, with which internuclear bond lengths and bond angles with respect to the chemical shift principal axis frame are determined from polycrystalline samples. Experiments using benzene and calcium formate verify the validity of the technique in heteronuclear (^(13)C-^1H) systems. Similar experiments on powdered trichloroacetic acid confirm the validity in homonuclear (^1H- ^1H) systems. The theory and spin dynamics are explored in detail, and the effects of a number of multiple pulse sequences are discussed.
The last part deals with an experiment measuring the ^(13)C chemical shift tensor in K_2Pt(CN)_4Br_(0.3) • 3H_2O, a one-dimensional conductor. The ^(13)C spectra are strongly affected by ^(14)N quadrupolar interactions via the ^(13)C - ^(14)N dipolar interaction. Single crystal rotation spectra are shown.
An appendix discussing the design, construction, and performance of a single-coil double resonance NMR sample probe is included.
Resumo:
The Mössbauer technique has been used to study the nuclear hyperfine interactions and lifetimes in W182 (2+ state) and W183 (3/2- and 5/2- states) with the following results: g(5/2-)/g(2+) = 1.40 ± 0.04; g(3/2- = -0.07 ± 0.07; Q(5/2-)/Q(2+) = 0.94 ± 0.04; T1/2(3/2-) = 0.184 ± 0.005 nsec; T1/2(5/2-) >̰ 0.7 nsec. These quantities are discussed in terms of a rotation-particle interaction in W183 due to Coriolis coupling. From the measured quantities and additional information on γ-ray transition intensities magnetic single-particle matrix elements are derived. It is inferred from these that the two effective g-factors, resulting from the Nilsson-model calculation of the single-particle matrix elements for the spin operators ŝz and ŝ+, are not equal, consistent with a proposal of Bochnacki and Ogaza.
The internal magnetic fields at the tungsten nucleus were determined for substitutional solid solutions of tungsten in iron, cobalt, and nickel. With g(2+) = 0.24 the results are: |Heff(W-Fe)| = 715 ± 10 kG; |Heff(W-Co)| = 360 ± 10 kG; |Heff(W-Ni)| = 90 ± 25 kG. The electric field gradients at the tungsten nucleus were determined for WS2 and WO3. With Q(2+) = -1.81b the results are: for WS2, eq = -(1.86 ± 0.05) 1018 V/cm2; for WO3, eq = (1.54 ± 0.04) 1018 V/cm2 and ƞ = 0.63 ± 0.02.
The 5/2- state of Pt195 has also been studied with the Mössbauer technique, and the g-factor of this state has been determined to be -0.41 ± 0.03. The following magnetic fields at the Pt nucleus were found: in an Fe lattice, 1.19 ± 0.04 MG; in a Co lattice, 0.86 ± 0.03 MG; and in a Ni lattice, 0.36 ± 0.04 MG. Isomeric shifts have been detected in a number of compounds and alloys and have been interpreted to imply that the mean square radius of the Pt195 nucleus in the first-excited state is smaller than in the ground state.
Resumo:
We demonstrate passive Q-switching of short-length double-clad Tm3+-doped silica fiber lasers near 2 mu m pumped by a laser diode array (LDA) at 790 nm. Polycrystalline Cr2+:ZnSe microchips with thickness from 0.3 to 1 mm are adopted as the Q-switching elements. Pulse duration of 120 ns, pulse energy over 14 mu] and repetition rate of 53 kHz are obtained from a 5-cm long fiber laser. As high as 530 kHz repetition rate is achieved from a 50-cm long fiber laser at similar to 10-W pump power. The performance of the Q-switched fiber lasers as a function of fiber length is also analyzed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short-and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing.
Resumo:
Dentre os diversos tipos de câncer agressivos, o câncer de mama é o mais comum em mulheres. Mutações hereditárias e adquiridas, assim como alterações epigenéticas atuam em sinergia na carcinogênese mamária e na progressão tumoral. A proteína P53 é uma supressora de tumor e possui uma atuação fundamental na integridade genômica. Apesar do vasto conhecimento sobre o controle da P53 a nível de proteína, ainda pouco se sabe sobre o controle transcricional do gene TP53. A série 21T, uma série de 4 linhagens celulares originadas da mama da mesma paciente, representando diferentes estágios de progressão tumoral mamária, é um eficiente modelo para investigação das alterações epigenéticas e suas influências na expressão gênica ao longo da progressão do câncer de mama. Nós analisamos a organização do domínio do gene TP53 através da técnica de arranjo de DNA, em diversas linhagens celulares de câncer de mama e linhagens controle, e realizamos uma tentativa de caracterizar estes elementos de DNA nas linhagens controle não-tumorais HB2 e MCF10A e nas tumorais MCF-7, MDA-MB-231, T47D, através dos marcadores epigenéticos de eucromatina, H4Ac, e heterocromatina, H3K9me3. Ainda analisamos a ligação de proteínas à região associada à matriz nuclear (MAR), denominada MAR 2, e a possível ligação da proteína ligante à matriz nuclear (MARBP), PARP-1, através de ensaios de gel shift (EMSA). Detectamos que na linhagem controle epitelial mamária, HB2, o gene TP53 está posicionado num domínio de DNA relativamente pequeno, aproximadamente 50 kb, delimitado por dois sítios de fixação à matriz nuclear. Interessantemente, esta estrutura de domínio se apresentou radicalmente diferente nas linhagens de câncer de mama estudadas, MCF7, T47D, MDA-MB-231 e BT474, nos quais o tamanho do domínio estudado estava aumentado e a transcrição do TP53 diminuída. Os enriquecimentos com os marcadores epigenéticos de cromatina H4Ac e H3K9me3 estão diferentemente distribuídos nas MARs nas linhagens celulares. Surpreendentemente, a MAR 2 apresentou uma ligação altamente específica, o que poderia representar a atuação de fatores transcricionais envolvidos na organização da cromatina. Através de programas de bioinformática, detectamos putativos sítios para interessantes fatores de transcrição, tais como o c/EBP-beta e c-myb, que poderiam atuar em cis regulando a expressão do gene TP53 e outros flanqueadores. Nós propusemos um modelo para a organização da cromatina na região de domínio do gene TP53 com os genes flanqueadores. Através da série 21T, detectamos uma hipometilação global genômica, nas células cancerosas 21NT e 21MT1. Uma importante diminuição da expressão global do marcador H4Ac nas células metastáticas 21MT1, foi detectada em relação às outras linhagens. Os níveis de RNAm das principais enzimas relacionadas as modificações epigenéticas são consistentes com as observadas hipometilação genômica e hipoacetilação. Através de microscopia confocal, verificamos que o marcador H4Ac está localizado, na maior parte na periferia e o marcador H3K9me3, pericêntrico nos núcleos tumorais. Por fim, verificamos que o promotor P1 do gene TP53 apresenta um estado de cromatina aberta, e a expressão do gene TP53 é similar em todas as células da série 21T.
Resumo:
Independent molecular markers based on mitochondrial and nuclear DNA were developed to provide positive identification of istiophorid and xiphiid billfishes (marlins, spearfishes, sailfish, and swordfish). Both classes of markers were based on amplification of short segments (<1.7 kb) of DNA by the polymerase chain reaction and subsequent digestion with informative restriction endonucleases. Candidate markers were evaluated for their ability to discriminate among the different species and the level of intraspecific variation they exhibited. The selected markers require no more than two restriction digestions to allow unambiguous identification, although it was not possible to distinguish between white marlin and striped marlin with any of the genetic characters screened in our study. Individuals collected from throughout each species’ range were surveyed with the selected markers demonstrating low levels of intraspecific character variation within species. The resulting keys provide two independent means for the forensic identification of fillets and for specific identification of early life history stages.
Resumo:
This paper presents results of a feasibility study aimed at developing a zero-transuranic-discharge fuel cycle based on the U-Th-TRU ternary cycle. The design objective is to find a fuel composition (mixture of thorium, enriched uranium, and recycled transuranic components) and fuel management strategy resulting in an equilibrium charge-discharge mass flow. In such a fuel cycle scheme, the quantity and isotopic vector of the transuranium (TRU) component is identical at the charge and discharge time points, thus allowing the whole amount of the TRU at the end of the fuel irradiation period to be separated and reloaded into the following cycle. The TRU reprocessing activity losses are the only waste stream that will require permanent geological storage, virtually eliminating the long-term radiological waste of the commercial nuclear fuel cycle. A detailed three-dimensional full pressurized water reactor (PWR) core model was used to analyze the proposed fuel composition and management strategy. The results demonstrate the neutronic feasibility of the fuel cycle with zero-TRU discharge. The amount of TRU and enriched uranium loaded reach equilibrium after about four TRU recycles. The reactivity coefficients were found to be within a range typical for a reference PWR core. The soluble boron worth is reduced by a factor of ∼2 from a typical PWR value. Nevertheless, the results indicate the feasibility of an 18-month fuel cycle design with an acceptable beginning-of-cycle soluble boron concentration even without application of burnable poisons.
Resumo:
Previous studies have demonstrated that germinal vesicle of amphibian oocyte contains small nuclear ribonucleoprotein polypeptide C (SNRPC). In this study, a putative member of SNRPC was identified from Carassius auratus gibelio oocyte cDNA library. Its full-length cDNA has an open reading frame of 201 nt for encoding a peptide of 66 an, a short 5'-UTR of 19 nt and a long 3'-UTR of 347 nt including a polyadenylation signal and poly- (A) tail, and the deduced amino acid sequence has 47% identity with the C-terminal of the zebrafish small nuclear ribonucleoprotein polypeptide C. Western blot analysis revealed its oocyte-specific expression. Immunofluorescence localization indicated that its gene product localized to numerous nucleoli within the oocytes and showed dynamic changes with the nucleoli during oocyte maturation. RT-PCR and Western blot analysis further revealed its constant presence in the oocytes and in the embryos until hatching. The data suggested that the newly identified CagOSNRPC might be a nucleolar protein. (c) 2006 Elsevier Inc. All rights reserved.
Resumo: