912 resultados para science teacher


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to investigate the questioning strategies of preservice teachers whenteaching science as inquiry. The guiding questions for this research were: In what ways do the questioning strategies of preservice teachers differ for male and female elementary students when teaching science as inquiry and how is Bloom’s Taxonomy evident within the questioning strategies of preservice teachers? Examination of the data indicated that participants asked a total of 4,158 questions to their elementary aged students. Of these questions, 974 (23%) were asked to boys, and 991 (24%) were asked to girls. The remaining questions (53%) were asked to the class as a whole, therefore no gender could be assigned to these questions. In relation to Bloom’s Taxonomy, 74% of the questions were basic knowledge, 15% were secondary comprehension, 2% were application, 4% were analysis, 1% were synthesis, and 3% were evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report shares my efforts in developing a solid unit of instruction that has a clear focus on student outcomes. I have been a teacher for 20 years and have been writing and revising curricula for much of that time. However, most has been developed without the benefit of current research on how students learn and did not focus on what and how students are learning. My journey as a teacher has involved a lot of trial and error. My traditional method of teaching is to look at the benchmarks (now content expectations) to see what needs to be covered. My unit consists of having students read the appropriate sections in the textbook, complete work sheets, watch a video, and take some notes. I try to include at least one hands-on activity, one or more quizzes, and the traditional end-of-unit test consisting mostly of multiple choice questions I find in the textbook. I try to be engaging, make the lessons fun, and hope that at the end of the unit my students get whatever concepts I‘ve presented so that we can move on to the next topic. I want to increase students‘ understanding of science concepts and their ability to connect understanding to the real-world. However, sometimes I feel that my lessons are missing something. For a long time I have wanted to develop a unit of instruction that I know is an effective tool for the teaching and learning of science. In this report, I describe my efforts to reform my curricula using the “Understanding by Design” process. I want to see if this style of curriculum design will help me be a more effective teacher and if it will lead to an increase in student learning. My hypothesis is that this new (for me) approach to teaching will lead to increased understanding of science concepts among students because it is based on purposefully thinking about learning targets based on “big ideas” in science. For my reformed curricula I incorporate lessons from several outstanding programs I‘ve been involved with including EpiCenter (Purdue University), Incorporated Research Institutions for Seismology (IRIS), the Master of Science Program in Applied Science Education at Michigan Technological University, and the Michigan Association for Computer Users in Learning (MACUL). In this report, I present the methodology on how I developed a new unit of instruction based on the Understanding by Design process. I present several lessons and learning plans I‘ve developed for the unit that follow the 5E Learning Cycle as appendices at the end of this report. I also include the results of pilot testing of one of lessons. Although the lesson I pilot-tested was not as successful in increasing student learning outcomes as I had anticipated, the development process I followed was helpful in that it required me to focus on important concepts. Conducting the pilot test was also helpful to me because it led me to identify ways in which I could improve upon the lesson in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today’s technology is evolving at an exponential rate. Everyday technology is finding more inroads into our education system. This study seeks to determine if having access to technology, including iPad tablets and a teacher's physical science webpage resources (videos, PowerPoint® presentations, and audio podcasts), assists ninth grade high school students in attaining greater comprehension and improved scientific literacy. Comprehension of the science concepts was measured by comparing current student pretest and post test scores on a teacher-written assessment. The current student post test scores were compared with prior classes’ (2010-2011 and 2009-2010) to determine if there was a difference in outcomes between the technology interventions and traditional instruction. Students entered responses to a technology survey that measured intervention usage and their perception of helpfulness of each intervention. The current year class’ mean composite scores, between the pretest and post test increased by 6.9 points (32.5%). Student composite scores also demonstrated that the interventions were successful in helping a majority of students (64.7%) attain the curriculum goals. The interventions were also successful in increasing student scientific literacy by meeting all of Bloom's cognitive levels that were assessed. When compared with prior 2010-2011 and 2009-2010 classes, the current class received a higher mean post test score indicating a positive effect of the use of technological interventions. The survey showed a majority of students utilized at least some of the technology interventions and perceived them as helpful, especially the videos and PowerPoint® presentations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metacognitve ability to accurately estimate ones performance in a test, is assumed to be of central importance for initializing task-oriented effort. In addition activating adequate problem-solving strategies, and engaging in efficient error detection and correction. Although school children's' ability to estimate their own performance has been widely investigated, this was mostly done under highly-controlled, experimental set-ups including only one single test occasion. Method: The aim of this study was to investigate this metacognitive ability in the context of real achievement tests in mathematics. Developed and applied by a teacher of a 5th grade class over the course of a school year these tests allowed the exploration of the variability of performance estimation accuracy as a function of test difficulty. Results: Mean performance estimations were generally close to actual performance with somewhat less variability compared to test performance. When grouping the children into three achievement levels, results revealed higher accuracy of performance estimations in the high achievers compared to the low and average achievers. In order to explore the generalization of these findings, analyses were also conducted for the same children's tests in their science classes revealing a very similar pattern of results compared to the domain of mathematics. Discussion and Conclusion: By and large, the present study, in a natural environment, confirmed previous laboratory findings but also offered additional insights into the generalisation and the test dependency of students' performances estimations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"NSF 94-58"--Vol. 2, cover p. [4].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"NSF 96-146 (replaces NSF 96-82)"--P. [4] of cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vol. 1, 3-15, 17-18 contain Proceedings of the 1st-15th, 17th-18th annual meetings of the Illinois State Teachers' Association, 1854-71

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-04

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this study were to investigate the beliefs concerning the philosophy of science held by practising science teachers and to relate those beliefs to their pupils' understanding of the philosophy of science. Three philosophies of science, differing in the way they relate experimental work to other parts of the scientific enterprise, are described. By the use of questionnaire techniques, teachers of four extreme types were identified. These are: the H type or hypothetico-deductivist teacher, who sees experiments as potential falsifiers of hypotheses or of logical deductions from them; the I type or inductivist teacher, who regards experiments mainly as a way of increasing the range of observations available for recording before patterns are noted and inductive generalisation is carried out; the V type or verificationist teacher, who expects experiments to provide proof and to demonstrate the truth or accuracy of scientific statements; and the 0 type, who has no discernible philosophical beliefs about the nature of science or its methodology. Following interviews of selected teachers to check their responses to the questionnaire and to determine their normal teaching methods, an experiment was organised in which parallel groups were given H, I and V type teaching in the normal school situation during most of one academic year. Using pre-test and post-test scores on a specially developed test of pupil understanding of the philosophy of science, it was shown that pupils were positively affected by their teacher's implied philosophy of science. There was also some indication that V type teaching improved marks obtained in school science examinations, but appeared to discourage the more able from continuing the study of science. Effects were also noted on vocabulary used by pupils to describe scientists and their activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is currently a crisis in science education in the United States. This statement is based on the National Science Foundation's report stating that the nation's students, on average, still rank near the bottom in science and math achievement internationally. ^ This crisis is the background of the problem for this study. This investigation studied learner variables that were thought to play a role in teaching chemistry at the secondary school level, and related them to achievement in the chemistry classroom. Among these, cognitive style (field dependence/independence), attitudes toward science, and self-concept had been given considerable attention by researchers in recent years. These variables were related to different competencies that could be used to measure the various types of achievement in the chemistry classroom at the secondary school level. These different competencies were called academic, laboratory, and problem solving achievement. Each of these chemistry achievement components may be related to a different set of learner variables, and the main purpose of this study was to investigate the nature of these relationships. ^ Three instruments to determine attitudes toward science, cognitive style, and self-concept were used for data collection. Teacher grades were used to determine chemistry achievement for each student. ^ Research questions were analyzed using Pearson Product Moment Correlation Coefficients and t-tests. Results indicated that field independence was significantly correlated with problem solving, academic, and laboratory achievement. Educational researchers should therefore investigate how to teach students to be more field independent so they can achieve at higher levels in chemistry. ^ It was also true that better attitudes toward the social benefits and problems that accompany scientific progress were significantly correlated with higher achievement on all three academic measures in chemistry. This suggests that educational researchers should investigate how students might be guided to manifest more favorable attitudes toward science so they will achieve at higher levels in chemistry. ^ An overall theme that emerged from this study was that findings refuted the idea that female students believed that science was for males only and was an inappropriate and unfeminine activity. This was true because when the means of males and females were compared on the three measures of chemistry achievement, there was no statistically significant difference between them on problem solving or academic achievement. However, females were significantly better in laboratory achievement. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Science professional development, which is fundamental to science education improvement, has been described as being weak and fragmentary. The purpose of this study was to investigate teachers' perceptions of informal science professional development to gain an in-depth understanding of the essence of the phenomenon and related science-teaching dispositions. Based on the frameworks of phenomenology, constructivism, and adult learning theory, the focus was on understanding how the phenomenon was experienced within the context of teachers' everyday world. ^ Data were collected from eight middle-school teachers purposefully selected because they had participated in informal programs during Project TRIPS (Teaching Revitalized Through Informal Programs in Science), a collaboration between the Miami-Dade school district, government agencies (including NASA), and non-profit organizations (including Audubon of Florida). In addition, the teachers experienced hands-on labs offered through universities (including the University of Arizona), field sites, and other agencies. ^ The study employed Seidman's (1991) three-interview series to collect the data. Several methods were used to enhance the credibility of the research, including using triangulation of the data. The interviews were transcribed, color-coded and organized into six themes that emerged from the data. The themes included: (a) internalized content knowledge, (b) correlated hands-on activities, (c) enhanced science-teaching disposition, (d) networking/camaraderie, (e) change of context, and (f) acknowledgment as professionals. The teachers identified supportive elements and constraints related to each theme. ^ The results indicated that informal programs offering experiential learning opportunities strengthened understanding of content knowledge. Teachers implemented hands-on activities that were explicitly correlated to their curriculum. Programs that were conducted in a relaxed context enhanced teachers' science-teaching dispositions. However, a lack of financial and administrative support, perceived safety risks, insufficient reflection time, and unclear itineraries impeded program implementation. The results illustrated how informal educators can use this cohesive model as they develop programs that address the supports and constraints to teachers' science instruction needs. This, in turn, can aid teachers as they strive to provide effective science instruction to students; notions embedded in reforms. Ultimately, this can affect how learners develop the ability to make informed science decisions that impact the quality of life on a global scale. ^