968 resultados para scaffold parodonto filtrazione lavaggi porosità composizione struttura liofilizzazione


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EU]Hiru dimentsioko inprimaketa etorkizun handiko teknologia bezala azaltzen zaigu gaur egun. Esate baterako, biomedikuntza arloan aukera berritzaileak ekar ditzake, baina baita hezkuntza, heziketa eta ikerketa munduetan ere. Teknologia berri honen abantailarik nagusiena prototipatze azkarrean datza, eta honi esker, mikro- eta makro- egitura definituak dituzten objektuak diseinatu eta fabrikatu daitezke modu lehiakorrean. Lan honen helburua 3D inprimagailu baten bitartez inprimaturiko polimero biobateragarri eta biodegradagarrietan oinarrituriko ereduen garapen eta fabrikazioan datza. Hala ere, lehenik eta behin, lehengaiak bai fisikoki eta bai termikoki karakterizatu behar dira, ondoren, 3D inprimagailuaren parametroen arteko erlazioa ezarri, eta azkenik, produktu finalaren egitura propietateak eta kalitatea aztertu. Aipaturiko lana aurrera eramateko erabili den materiala polilaktida (PLA) izan da, zeinen erabilera oso zabaldua dagoen medikuntza arloan inplante (torloju, iltze, plaka eta abar) moduan eta ehun ingeniaritzaren munduan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chromosome scaffolds in higher eukaryotic nuclei have been described elsewhere. But it is unknown when they evolved. The dinoflagellates are the primitive organisms that may be the intermediate between prokaryotes and eukaryotes. Combining chromosome scaffold preparation methods with embedment-free section microscopy, we demonstrate that the dinoflagellate Crypthecodinium cohnii chromosome retains a protein scaffold after the depletion of DNA and soluble proteins. This scaffold preserves the morphology characteristic of the chromosome. Two-dimensional electrophoreses show that the chromosome scaffolds are mainly composed of acidic proteins. Our results suggest that a framework similar to the chromosome scaffold in the mammalian cell appeared in the primitive eukaryote. We propose that the chromosome scaffold possibly originated from the early stages of eukaryote evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanohydroxyapatite (op-HA) surface-modified with L-lactic acid oligomer (LAc oligomer) was prepared by LAc oligomer grafted onto the hydroxyapatite (HA) surface. The nanocomposite of op-HA/PLGA with different op-HA contents of 5, 10, 20 and 40 wt.% in the composite was fabricated into three-dimensional scaffolds by the melt-molding and particulate leaching methods. PLGA and the nanocomposite of HA/PLGA with 10 wt.% of ungrafted hydroxyapatite were used as the controls. The scaffolds were highly porous with evenly distributed and interconnected pore structures, and the porosity was around 90%. Besides the macropores of 100-300 mu m created by the leaching of NaCl particles, the micropores (1-50 mu m) in the pore walls increased with increasing content of op-HA in the composites of op-HA/PLGA. The op-HA particles could disperse more uniformly than those of pure HA in PLGA matrix. The 20 wt.% op-HA/PLGA sample exhibited the maximum mechanical strength, including bending strength (4.14 MPa) and compressive strength (2.31 MPa). The cell viability and the areas of the attached osteoblasts on the films of 10 wt.% op-HA/PLGA and 20 wt.% op-HA/PLGA were evidently higher than those on the other composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposite of hydroxyapatite (HAP) surface-grafted with poly(L-lactide) (PLLA) (g-HAP) shows a wide application for bone fixation materials due to its improved interface compatibility, mechanical property and biocompatibility in our previous study. In this paper, a 3-D porous scaffold of g-HAP/poly (lactide-co-glycolide) (PLGA) was fabricated using the solvent casting/particulate leaching method to investigate its applications in bone replacement and tissue engineering. The composite of un-grafted HAP/PLGA and neat PLGA were used as controls. Their in vivo mineralization and osteogenesis were investigated by intramuscular implantation and replacement for repairing radius defects of rabbits. After surface modification, more uniform distribution of g-HAP particles but a lower calcium exposure on the surface of g-HAP/PLGA was observed. Intramuscular implantation study showed that the scaffold of g-HAP/PLGA was more stable than that of PLGA, and exhibited similar mineralization and biodegradability to HAP/PLGA at the 12-20 weeks post-surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cannabinoid receptors are members of the large family of G-protein coupled receptors. Two types of cannabinoid receptor have been discovered: CB1 and CB2. CB1 receptors are localised predominantly in the brain whereas CB2 receptors are more abundant in peripheral nervous system cells. CB1 receptors have been related with a number of disorders, including depression, anxiety, stress, schizophrenia, chronic pain and obesity. For this reason, several cannabinoid ligands were developed as drug candidates. Among these ligands, a prominent position is occupied by SR141716 (Rimonabant), which is a pyrazole derivative with inverse agonist activity discovered by Sanofi-Synthelabo in 1994. This compound was marketed in Europe as an anti-obesity drug, but subsequently withdrawn due to its side-effects. Since the relationship between the CB1 receptors’ functional modification, density and distribution, and the beginning of a pathological state is still not well understood, the development of radio-ligands suitable for in vivo PET (Positron Emission Tomography) functional imaging of CB1 receptors remains an important area of research in medicine and drug development. To date, a few radiotracers have been synthesised and tested in vivo, but most of them afforded unsatisfactory brain imaging results. A handful of radiolabelled CB1 PET ligands have also been submitted to clinical trials in humans. In this PhD Thesis the design, synthesis and characterization of three new classes of potential high-affinity CB1 ligands as candidate PET tracers is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The successful design of biomaterial scaffolds for articular cartilage tissue engineering requires an understanding of the impact of combinations of material formulation parameters on diverse and competing functional outcomes of biomaterial performance. This study sought to explore the use of a type of unsupervised artificial network, a self-organizing map, to identify relationships between scaffold formulation parameters (crosslink density, molecular weight, and concentration) and 11 such outcomes (including mechanical properties, matrix accumulation, metabolite usage and production, and histological appearance) for scaffolds formed from crosslinked elastin-like polypeptide (ELP) hydrogels. The artificial neural network recognized patterns in functional outcomes and provided a set of relationships between ELP formulation parameters and measured outcomes. Mapping resulted in the best mean separation amongst neurons for mechanical properties and pointed to crosslink density as the strongest predictor of most outcomes, followed by ELP concentration. The map also grouped formulations together that simultaneously resulted in the highest values for matrix production, greatest changes in metabolite consumption or production, and highest histological scores, indicating that the network was able to recognize patterns amongst diverse measurement outcomes. These results demonstrated the utility of artificial neural network tools for recognizing relationships in systems with competing parameters, toward the goal of optimizing and accelerating the design of biomaterial scaffolds for articular cartilage tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The actions of many hormones and neurotransmitters are mediated through stimulation of G protein-coupled receptors. A primary mechanism by which these receptors exert effects inside the cell is by association with heterotrimeric G proteins, which can activate a wide variety of cellular enzymes and ion channels. G protein-coupled receptors can also interact with a number of cytoplasmic scaffold proteins, which can link the receptors to various signaling intermediates and intracellular effectors. The multicomponent nature of G protein-coupled receptor signaling pathways makes them ideally suited for regulation by scaffold proteins. This review focuses on several specific examples of G protein-coupled receptor-associated scaffolds and the roles they may play in organizing receptor-initiated signaling pathways in the cardiovascular system and other tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Par proteins are involved in determining cellular asymmetry. Recent studies have identified one of these proteins, Par6, as a key regulator of cell polarity and transformation via its interactions with small GTPases and atypical forms of protein kinase C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of this study were to develop a three-dimensional acellular cartilage matrix (ACM) and investigate its possibility for use as a scaffold in cartilage tissue engineering. Bovine articular cartilage was decellularized sequentially with trypsin, nuclease solution, hypotonic buffer, and Triton x 100 solution; molded with freeze-drying process; and cross-linked by ultraviolet irradiation. Histological and biochemical analysis showed that the ACM was devoid of cells and still maintained the collagen and glycosaminoglycan components of cartilage. Scanning electronic microscopy and mercury intrusion porosimetry showed that the ACM had a sponge-like structure of high porosity. The ACM scaffold had good biocompatibility with cultured rabbit bone marrow mesenchymal stem cells with no indication of cytotoxicity both in contact and in extraction assays. The cartilage defects repair in rabbit knees with the mesenchymal stem cell-ACM constructs had a significant improvement of histological scores when compared to the control groups at 6 and 12 weeks. In summary, the ACM possessed the characteristics that afford it as a potential scaffold for cartilage tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Letter describes the hit-to-lead progression and SAR of a series of biphenyl acetylene compounds derived from an HTS screening campaign targeting the mGlu(5) receptor. 'Molecular switches' were identified that modulated modes of pharmacology, and several compounds within this series were shown to be efficacious in reversal of amphetamine induced hyperlocomotion in rats after ip dosing, a preclinical model that shows similar positive effects with known antipsychotic agents. Published by Elsevier Ltd.