924 resultados para rrf 1 protein
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Annotation of the 330-kb Chlorella virus PBCV-1 genome identified a 237 nucleotide gene (a438l) that codes for a protein with ~35% amino acid identity to glutaredoxins (Grx) found in other organisms. The PBCV-1 protein resembles classical Grxs in both size (9 kDa) and location of the active site (N-terminus). However, the PBCV-1 Grx is unusual because it contains a monothiol active site (CPYS) rather than the typical dithiol active site (CPYC). To examine this unique active site, four sitespecific mutants (CPYC, CPYA, SPYC, and SPYS) were constructed to determine if the N-terminal cysteine is necessary for enzyme activity. Wild type and both mutants containing N-terminal cysteines catalyzed the reduction of disulfides in a coupled system with GSH, NADPH, and glutathione reductase. However, both mutants with an altered N-terminal cysteine were inactive. The grx gene is common in the Chlorella viruses. Molecular phylogenetic analyses of the PBCV-1 enzyme support its relatedness to those from other Chlorella viruses and yet demonstrate the divergence of the Grx molecule.
Resumo:
Medulloblastoma, the most common malignant paediatric brain tumour, is currently treated with nonspecific cytotoxic therapies including surgery, whole-brain radiation, and aggressive chemotherapy. As medulloblastoma exhibits marked intertumoural heterogeneity, with at least four distinct molecular variants, previous attempts to identify targets for therapy have been underpowered because of small samples sizes. Here we report somatic copy number aberrations (SCNAs) in 1,087 unique medulloblastomas. SCNAs are common in medulloblastoma, and are predominantly subgroup-enriched. The most common region of focal copy number gain is a tandem duplication of SNCAIP, a gene associated with Parkinson's disease, which is exquisitely restricted to Group 4 alpha. Recurrent translocations of PVT1, including PVT1-MYC and PVT1-NDRG1, that arise through chromothripsis are restricted to Group 3. Numerous targetable SCNAs, including recurrent events targeting TGF-beta signalling in Group 3, and NF-kappa B signalling in Group 4, suggest future avenues for rational, targeted therapy.
Resumo:
We investigated the role of aminoguanidine and benfotiamine on the inhibition of reactive oxygen species (ROS) generation in macrophages induced by advanced glycated albumin (AGE-albumin) and its relationship with cell cholesterol homeostasis, emphasizing the expression of the ATP binding cassette transporter A-1 (ABCA-1). AGE-albumin was made by incubating fatty acid-free albumin with 10 mM glycolaldehyde. ROS production and ABCA-1 protein level were determined by flow cytometry in J774 macrophages treated along time with control (C) or AGE-albumin alone or in the presence of aminoguanidine or benfotiamine. Mitochondrial function was evaluated by oxygraphy. Compared to C-albumin, AGE-albumin increased ROS production in macrophages, which was ascribed to the activities of NADPH oxidase and of the mitochondrial system. Mitochondrial respiratory chain activity was reduced in cells incubated with AGE-albumin. ROS generation along time was associated with the reduction in macrophage ABCA-1 protein level. Aminoguanidine prevented ROS elevation and restored the ABCA-1 content in macrophages; on the other hand, benfotiamine that promoted a lesser reduction in ROS generation was not able to restore ABCA-1 levels. Inhibition of oxidative stress induced by AGE-albumin prevents disturbances in reverse cholesterol transport by curbing the reduction of ABCA-1 elicited by advanced glycation in macrophages and therefore may contribute to the prevention of atherosclerosis in diabetes mellitus.
Resumo:
Background: The aim of this work was to study the new bone tissue formation after bone morphogenetic protein type 2 (rhBMP-2) and P-1 application, using 5 and 10 mu g of each, combined to a material carrier, in critical bone defects. Methods: It was used 70 Wistar rats (male, similar to 250 g) that were divided in 10 groups with seven animals on each. Groups are the following: critical bone defect only, pure monoolein gel, 5 mu g of pure P-1, 5 mu g of pure rhBMP-2, 5 mu g of P-1/monoolein gel, 5 mu g of rhBMP-2/monoolein gel, 10 mu g of pure P-1, 10 mu g of pure rhBMP-2, 10 mu g of P-1/monoolein gel, 10 mu g of rhBMP-2/monoolein gel. Animals were sacrificed after 4 weeks of the surgical procedure and the bone samples were submitted to histological, histomorphometrical, and immunohistochemical evaluations. Results: Animals treated with pure P-1 protein, in both situations with 5 mu g and 10 mu g, had no significant difference (P > 0.05) for new bone formation; other groups treated with 10 mu g were statistically significant (P < 0.05) among themselves and when compared with groups in which it was inserted the monoolein gel or critical bone defect only (P < 0.05). In the group involving the 10 mu g rhBMP-2/monoolein gel association, it was observed an extensive bone formation, even when compared with the same treatment without the gel carrier. Conclusion: Using this experimental animal model, more new bone tissue was found when it was inserted the rhBMP-2, especially when this protein was combined to the vehicle, and this process seems to be dose dependent. Microsc. Res. Tech., 2011.(c) 2011 Wiley Periodicals, Inc.
Resumo:
Abstract Background The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1α. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1α protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods Two groups of male Wistar rats (2 Mo of age, 188.82 ± 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1α protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean ± SE) of 4.102 ± 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1α protein expression increased significantly from a 1.11 ± 0.12 in the sedentary rats to 1.74 ± 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1α protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1α protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion These data suggest that PGC-1α most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.
Resumo:
Abstract Background ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a member of the ADAMTS family of metalloproteases. Here, we investigated mRNA and protein levels of ADAMTS-1 in normal and neoplastic tissues using qPCR, immunohistochemistry and immunoblot analyses, and we addressed the role of ADAMTS-1 in regulating migration, invasion and invadopodia formation in breast tumor cell lines. Results In a series of primary breast tumors, we observed variable levels of ADAMTS-1 mRNA expression but lower levels of ADAMTS-1 protein expression in human breast cancers as compared to normal tissue, with a striking decrease observed in high-malignancy cases (triple-negative for estrogen, progesterone and Her-2). This result prompted us to analyze the effect of ADAMTS-1 knockdown in breast cancer cells in vitro. MDA-MB-231 cells with depleted ADAMTS-1 expression demonstrated increased migration, invasion and invadopodia formation. The regulatory mechanisms underlying the effects of ADAMTS-1 may be related to VEGF, a growth factor involved in migration and invasion. MDA-MB-231 cells with depleted ADAMTS-1 showed increased VEGF concentrations in conditioned medium capable of inducing human endothelial cells (HUVEC) tubulogenesis. Furthermore, expression of the VEGF receptor (VEGFR2) was increased in MDA-MB-231 cells as compared to MCF7 cells. To further determine the relationship between ADAMTS-1 and VEGF regulating breast cancer cells, MDA-MB-231 cells with reduced expression of ADAMTS-1 were pretreated with a function-blocking antibody against VEGF and then tested in migration and invasion assays; both were partially rescued to control levels. Conclusions ADAMTS-1 expression was decreased in human breast tumors, and ADAMTS-1 knockdown stimulated migration, invasion and invadopodia formation in breast cancer cells in vitro. Therefore, this series of experiments suggests that VEGF is involved in the effects mediated by ADAMTS-1 in breast cancer cells.
Resumo:
Abstract Background Advanced glycation end products (AGE) alter lipid metabolism and reduce the macrophage expression of ABCA-1 and ABCG-1 which impairs the reverse cholesterol transport, a system that drives cholesterol from arterial wall macrophages to the liver, allowing its excretion into the bile and feces. Oxysterols favors lipid homeostasis in macrophages and drive the reverse cholesterol transport, although the accumulation of 7-ketocholesterol, 7alpha- hydroxycholesterol and 7beta- hydroxycholesterol is related to atherogenesis and cell death. We evaluated the effect of glycolaldehyde treatment (GAD; oxoaldehyde that induces a fast formation of intracellular AGE) in macrophages overloaded with oxidized LDL and incubated with HDL alone or HDL plus LXR agonist (T0901317) in: 1) the intracellular content of oxysterols and total sterols and 2) the contents of ABCA-1 and ABCG-1. Methods Total cholesterol and oxysterol subspecies were determined by gas chromatography/mass spectrometry and HDL receptors content by immunoblot. Results In control macrophages (C), incubation with HDL or HDL + T0901317 reduced the intracellular content of total sterols (total cholesterol + oxysterols), cholesterol and 7-ketocholesterol, which was not observed in GAD macrophages. In all experimental conditions no changes were found in the intracellular content of other oxysterol subspecies comparing C and GAD macrophages. GAD macrophages presented a 45% reduction in ABCA-1 protein level as compared to C cells, even after the addition of HDL or HDL + T0901317. The content of ABCG-1 was 36.6% reduced in GAD macrophages in the presence of HDL as compared to C macrophages. Conclusion In macrophages overloaded with oxidized LDL, glycolaldehyde treatment reduces the HDL-mediated cholesterol and 7-ketocholesterol efflux which is ascribed to the reduction in ABCA-1 and ABCG-1 protein level. This may contribute to atherosclerosis in diabetes mellitus.
Resumo:
ZusammenfassungDer humane kationische Aminosäure-Transporter hCAT-1 (CAT für cationic amino acid transporter) gehört zur Familie der Na+- und pH-unabhängigen Transporter für basische Aminosäuren (BAS). Die vorliegende Arbeit befasst sich mit unterschiedlichen Aspekten des hCAT-1-vermittelten Transportes, die in zwei Teilabschnitten behandelt werden. Im ersten Abschnitt wurden die Transporteigenschaften von hCAT-1-exprimierenden X. laevis-Oozyten mit Hilfe von elektrophysiologischen Methoden untersucht und mit denen der Isoformen hCAT-2A und -2B verglichen. Dabei zeigte sich, dass es durch die Expression von hCAT-2A und -2B in Oozyten zur Bildung eines BAS-Potentiales kommt, jedoch nicht durch die Expression von hCAT-1. Hierfür dürfte die hohe Transstimulierbarkeit des hCAT-1-Proteins verantwortlich sein. Obwohl das Membranpotential einer Zelle die Akkumulation von BAS durch die hCAT-Proteine beeinflusst, war bei sehr hohen extrazellulären BAS-Konzentrationen die Akkumulation durch hCAT-1 und -2B im Gegensatz zu hCAT-2A nicht vom Membranpotential abhängig, da unter diesen Bedingungen der Efflux limitierend wirkte. Mit Hilfe der voltage clamp-Methode wurden die L-Arginin-induzierten Maximalströme (Vmax) und die Leitfähigkeiten der hCAT-Proteine bestimmt. Die so ermittelten Vmax-Werte sind nur halb so groß wie die durch Flux-Studien bestimmten. Daher muss von einem Gegentransport an positiver Ladung (Substrat) ausgegangen werden. Weiterhin konnte gezeigt werden, dass die hCAT-Isoformen zwei unterschiedliche Leitfähigkeitszustände für BAS besitzen, die von der intrazellulären BAS-Konzentration abhängig sind. Eine Leitfähigkeitszunahme durch Zugabe von extrazellulärem L-Arginin konnte bei allen hCAT-Isoformen in depletierten Oozyten beobachtet werden. In BAS-beladenen Oozyten führte die Zugabe von L-Arginin dagegen zu keiner (hCAT-1 und hCAT-2B) bzw. zu einer geringen (hCAT-2A) Zunahme der Leitfähigkeit der Transporter. Im Substratgleichgewicht jedoch nahm die Leitfähigkeit der drei untersuchten hCAT-Isoformen in Abhängigkeit von der Substratkonzentration zu. Überraschenderweise wurden für die untersuchten hCAT-Isoformen Leck-Ströme in Abwesenheit von BAS nachgewiesen. An hCAT-2B-exprimierenden Oozyten wurde eine erhöhte Leitfähigkeit für K+-Ionen gezeigt. Die physiologische Bedeutung dieser Kanalfunktion ist jedoch noch völlig ungeklärt. Im zweiten Abschnitt wurde der Mechanismus der Proteinkinase C (PKC)-vermittelten Inhibition der hCAT-1-Transportaktivität untersucht. Hierfür wurden hCAT-1.EGFP-Konstrukte in Oozyten und in U373MG Glioblastom-Zellen exprimiert. Mit Hilfe konfokaler Mikroskopie und Western-Blot-Analysen von biotinylierten Zelloberflächen-Proteinen wurde gezeigt, dass die PKC-vermittelte Reduktion der hCAT-1-Transportaktivität auf einer Reduktion der hCAT-Expression an der Zelloberfläche beruht. Ähnliche Ergebnisse wurden auch mit dem endogen in humanen DLD-1 Kolonkarzinom-Zellen exprimierten hCAT-1 erzielt. Der PKC-Effekt war auch noch nach Entfernung der putativen PKC-Erkennungsstellen am hCAT-1-Protein vorhanden. Daher reguliert die PKC die hCAT-1-Transportaktivität vermutlich über einen indirekten Mechanismus, d. h. nicht über eine direkte Phosphorylierung des hCAT-1-Proteins. Die Veränderung der Zelloberflächenexpression stellt einen neuen Regulationsmechanismus für die CAT-Proteine dar, der erklären kann, warum sich Modifikationen in der CAT-Proteinexpression oft nicht in entsprechenden Veränderungen der Transportaktivität widerspiegeln.
Resumo:
Recenti analisi sull’intero trascrittoma hanno rivelato una estensiva trascrizione di RNA non codificanti (ncRNA), le quali funzioni sono tuttavia in gran parte sconosciute. In questo lavoro è stato dimostrato che alte dosi di camptotecina (CPT), un farmaco antitumorale inibitore della Top1, aumentano la trascrizione di due ncRNA antisenso in 5’ e 3’ (5'aHIF-1α e 3'aHIF-1α rispettivamente) al locus genico di HIF-1α e diminuiscono i livelli dell’mRNA di HIF-1α stesso. Gli effetti del trattamento sono Top1-dipendenti, mentre non dipendono dal danno al DNA alla forca di replicazione o dai checkpoint attivati dal danno al DNA. I ncRNA vengono attivati in risposta a diversi tipi di stress, il 5'aHIF-1α è lungo circa 10 kb e possiede sia il CAP in 5’ sia poliadenilazione in 3’ (in letteratura è noto che il 3'aHIF-1α è un trascritto di 1,7 kb, senza 5’CAP né poliadenilazione). Analisi di localizzazione intracellulare hanno dimostrato che entrambi sono trascritti nucleari. In particolare 5'aHIF-1α co-localizza con proteine del complesso del poro nucleare, suggerendo un suo possibile ruolo come mediatore degli scambi della membrana nucleare. È stata dimostrata inoltre la trascrizione dei due ncRNA in tessuti di tumore umano del rene, evidenziandone possibili ruoli nello sviluppo del cancro. È anche noto in letteratura che basse dosi di CPT in condizioni di ipossia diminuiscono i livelli di proteina di HIF-1α. Dopo aver dimostrato su diverse linee cellulari che i due ncRNA sopracitati non potessero essere implicati in tale effetto, abbiamo studiato le variazioni dell’intero miRnoma alle nuove condizioni sperimentali. In tal modo abbiamo scoperto che il miR-X sembra essere il mediatore molecolare dell’abbattimento di HIF-1α dopo trattamento con basse dosi di CPT in ipossia. Complessivamente, questi risultati suggeriscono che il fattore di trascrizione HIF-1α venga finemente regolato da RNA non-codificanti indotti da danno al DNA.
Resumo:
L’osteosarcoma (OS) è il tumore primitivo dell’osso più comune in età pediatrica e adolescenziale. L’OS è stato recentemente riconsiderato come una patologia da de-differenziamento, legata all’interruzione del processo cui vanno incontro i precursori osteoblastici, quali le cellule staminali mesenchimali (MSCs), per trasformarsi in osteoblasti maturi. Il sistema IGF è coinvolto nella regolazione della proliferazione e del differenziamento di cellule di OS. IRS-1 è un mediatore critico di tale via di segnalazione e il suo livello di espressione modula il differenziamento di cellule ematopoietiche. Lo scopo di questa tesi è stato quello di definire il ruolo di IRS-1 nel differenziamento osteoblastico di MSCs e cellule di OS. Il potenziale differenziativo di cellule di OS umano e murino e di MSCs derivate da midollo osseo è stato valutato tramite Alizarin Red staining e Real Time-PCR. Dai dati ottenuti è emerso come i livelli di espressione di IRS-1 diminuiscano durante il differenziamento osteoblastico. Conseguentemente, i livelli di espressione di IRS-1 sono stati manipolati utilizzando shRNA per down-regolare l’espressione della proteina o un plasmide per sovra-esprimerla. Sia la down-regolazione sia la sovra-espressione di IRS-1 hanno inibito il differenziamento osteoblastico delle linee cellulari considerate. Allo scopo di valutare il contributo di IRS-1 nella via di segnalazione di IGF-1R è stato utilizzato l’inibitore di tale recettore, αIR-3. Anche in questo caso è stata osservata una riduzione della capacità differenziativa. L’inibitore del proteasoma MG-132 ha portato ad un aumento dei livelli di IRS-1, portando nuovamente all’inibizione del differenziamento osteoblastico e suggerendo che l’ubiquitinazione di questa proteina potrebbe avere un ruolo importante nel mantenimento di appropriati livelli di espressione di IRS-1. I risultati ottenuti indicano la criticità dei livelli di espressione di IRS-1 nella determinazione della capacità differenziativa sia di cellule di OS umano e murino, sia delle MSCs.
Resumo:
Scutellaria baicalensis (SB) and SB-derived polyphenols possess anti-proliferative activities in several cancers, including pancreatic cancer (PaCa). However, the precise molecular mechanisms have not been fully defined. SB extract and SB-derived polyphenols (wogonin, baicalin, and baicalein) were used to determine their anti-proliferative mechanisms. Baicalein significantly inhibited the proliferation of PaCa cell lines in a dose-dependent manner, whereas wogonin and baicalin exhibited a much less robust effect. Treatment with baicalein induced apoptosis with release of cytochrome c from mitochondria, and activation of caspase-3 and -7 and PARP. The general caspase inhibitor zVAD-fmk reversed baicalein-induced apoptosis, indicating a caspase-dependent mechanism. Baicalein decreased expression of Mcl-1, an anti-apoptotic member of the Bcl-2 protein family, presumably through a transcriptional mechanism. Genetic knockdown of Mcl-1 resulted in marked induction of apoptosis. The effect of baicalein on apoptosis was significantly attenuated by Mcl-1 over-expression, suggesting a critical role of Mcl-1 in this process. Our results provide evidence that baicalein induces apoptosis in pancreatic cancer cells through down-regulation of the anti-apoptotic Mcl-1 protein.
Resumo:
Sphingosine 1-phosphate (S1P) is a potent mitogenic signal generated from sphingosine by the action of sphingosine kinases (SKs). In this study, we show that in the human arterial endothelial cell line EA.hy 926 histamine induces a time-dependent upregulation of the SK-1 mRNA and protein expression which is followed by increased SK-1 activity. A similar upregulation of SK-1 is also observed with the direct protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). In contrast, SK-2 activity is not affected by neither histamine nor TPA. The increased SK-1 protein expression is due to stimulated de novo synthesis since cycloheximide inhibited the delayed SK-1 protein upregulation. Moreover, the increased SK-1 mRNA expression results from an increased promoter activation by histamine and TPA. In mechanistic terms, the transcriptional upregulation of SK-1 is dependent on PKC and the extracellular signal-regulated protein kinase (ERK) cascade since staurosporine and the MEK inhibitor U0126 abolish the TPA-induced SK-1 induction. Furthermore, the histamine effect is abolished by the H1-receptor antagonist diphenhydramine, but not by the H2-receptor antagonist cimetidine. Parallel to the induction of SK-1, histamine and TPA stimulate an increased migration of endothelial cells, which is prevented by depletion of the SK-1 by small interfering RNA (siRNA). To appoint this specific cell response to a specific PKC isoenzyme, siRNA of PKC-alpha, -delta, and -epsilon were used to selectively downregulate the respective isoforms. Interestingly, only depletion of PKC-alpha leads to a complete loss of TPA- and histamine-triggered SK-1 induction and cell migration. In summary, these data show that PKC-alpha activation in endothelial cells by histamine-activated H1-receptors, or by direct PKC activators leads to a sustained upregulation of the SK-1 protein expression and activity which, in turn, is critically involved in the mechanism of endothelial cell migration.
Resumo:
BACKGROUND AND PURPOSE: Extracellular nucleotides act as potent mitogens for renal mesangial cells (MC). In this study we determined whether extracellular nucleotides trigger additional responses in MCs and the mechanisms involved. EXPERIMENTAL APPROACH: MC migration was measured after nucleotide stimulation in an adapted Boyden-chamber. Sphingosine kinase-1 (SK-1) protein expression was detected by Western blot analysis and mRNA expression quantified by real-time PCR. SK activity was measured by an in vitro kinase assay using sphingosine as substrate. KEY RESULTS: Nucleotide stimulation caused biphasic activation of SK-1, but not SK-2. The first peak occurred after minutes of stimulation and was followed by a second delayed peak after 4-24 h of stimulation. The delayed activation of SK-1 is due to increased SK-1 mRNA steady-state levels and de novo synthesis of SK-1 protein, and depends on PKC and the classical MAPK cascade. To see whether nucleotide-stimulated cell responses require SK-1, we selectively depleted SK-1 from cells by using small-interference RNA (siRNA). MC migration is highly stimulated by ATP and UTP; this is mimicked by exogenously added S1P. Depletion of SK-1 by siRNA drastically reduced the effect of ATP and UTP on cell migration but not on cell proliferation. Furthermore, MCs isolated from SK-1-deficient mice were completely devoid of nucleotide-induced migration. CONCLUSIONS AND IMPLICATIONS: These data show that extracellular nucleotides besides being mitogenic also trigger MC migration and this cell response critically requires SK-1 activity. Thus, pharmacological intervention of SK-1 may have impacts on situations where MC migration is important such as during inflammatory kidney diseases.
Resumo:
Nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1) transcription factors regulate many important biological and pathological processes. Activation of NF-kappaB is regulated by the inducible phosphorylation of NF-kappaB inhibitor IkappaB by IkappaB kinase. In contrast, Fos, a key component of AP-1, is primarily transcriptionally regulated by serum responsive factors (SRFs) and ternary complex factors (TCFs). Despite these different regulatory mechanisms, there is an intriguing possibility that NF-kappaB and AP-1 may modulate each other, thus expanding the scope of these two rapidly inducible transcription factors. To determine whether NF-kappaB activity is involved in the regulation of fos expression in response to various stimuli, we analyzed activity of AP-1 and expression of fos, fosB, fra-1, fra-2, jun, junB, and junD, as well as AP-1 downstream target gene VEGF, using MDAPanc-28 and MDAPanc-28/IkappaBalphaM pancreatic tumor cells and wild-type, IKK1-/-, and IKK2-/- murine embryonic fibroblast cells. Our results show that elk-1, a member of TCFs, is one of the NF-kappaB downstream target genes. Inhibition of NF-kappaB activity greatly decreased expression of elk-1. Consequently, the reduced level of activated Elk-1 protein by extracellular signal-regulated kinase impeded constitutive, serum-, and superoxide-inducible c-fos expression. Thus, our study revealed a distinct and essential role of NF-kappaB in participating in the regulation of elk-1, c-fos, and VEGF expression.