854 resultados para route discovery
Resumo:
Graphene has promised many novel applications in nanoscale electronics and sustainable energy due to its novel electronic properties. Computational exploration of electronic functionality and how it varies with architecture and doping presently runs ahead of experimental synthesis yet provides insights into types of structures that may prove profitable for targeted experimental synthesis and characterization. We present here a summary of our understanding on the important aspects of dimension, band gap, defect, and interfacial engineering of graphene based on state-of-the-art ab initio approaches. Some most recent experimental achievements relevant for future theoretical exploration are also covered.
Resumo:
Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models -- each one representing a variant of the business process -- as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.
Resumo:
Building and maintaining software are not easy tasks. However, thanks to advances in web technologies, a new paradigm is emerging in software development. The Service Oriented Architecture (SOA) is a relatively new approach that helps bridge the gap between business and IT and also helps systems remain exible. However, there are still several challenges with SOA. As the number of available services grows, developers are faced with the problem of discovering the services they need. Public service repositories such as Programmable Web provide only limited search capabilities. Several mechanisms have been proposed to improve web service discovery by using semantics. However, most of these require manually tagging the services with concepts in an ontology. Adding semantic annotations is a non-trivial process that requires a certain skill-set from the annotator and also the availability of domain ontologies that include the concepts related to the topics of the service. These issues have prevented these mechanisms becoming widespread. This thesis focuses on two main problems. First, to avoid the overhead of manually adding semantics to web services, several automatic methods to include semantics in the discovery process are explored. Although experimentation with some of these strategies has been conducted in the past, the results reported in the literature are mixed. Second, Wikipedia is explored as a general-purpose ontology. The benefit of using it as an ontology is assessed by comparing these semantics-based methods to classic term-based information retrieval approaches. The contribution of this research is significant because, to the best of our knowledge, a comprehensive analysis of the impact of using Wikipedia as a source of semantics in web service discovery does not exist. The main output of this research is a web service discovery engine that implements these methods and a comprehensive analysis of the benefits and trade-offs of these semantics-based discovery approaches.
Resumo:
Intra-host sequence data from RNA viruses have revealed the ubiquity of defective viruses in natural viral populations, sometimes at surprisingly high frequency. Although defective viruses have long been known to laboratory virologists, their relevance in clinical and epidemiological settings has not been established. The discovery of long-term transmission of a defective lineage of dengue virus type 1 (DENV-1) in Myanmar, first seen in 2001, raised important questions about the emergence of transmissible defective viruses and their role in viral epidemiology. By combining phylogenetic analyses and dynamical modelling, we investigate how evolutionary and ecological processes at the intra-host and inter-host scales shaped the emergence and spread of the defective DENV-1 lineage. We show that this lineage of defective viruses emerged between June 1998 and February 2001, and that the defective virus was transmitted primarily through co-transmission with the functional virus to uninfected individuals. We provide evidence that, surprisingly, this co-transmission route has a higher transmission potential than transmission of functional dengue viruses alone. Consequently, we predict that the defective lineage should increase overall incidence of dengue infection, which could account for the historically high dengue incidence reported in Myanmar in 2001-2002. Our results show the unappreciated potential for defective viruses to impact the epidemiology of human pathogens, possibly by modifying the virulence-transmissibility trade-off, or to emerge as circulating infections in their own right. They also demonstrate that interactions between viral variants, such as complementation, can open new pathways to viral emergence.
Resumo:
This study investigates whether and how a firm’s ownership and corporate governance affect its timeliness of price discovery, which is referred to as the speed of incorporation of value-relevant information into the stock price. Using a panel data of 1,138 Australian firm-year observations from 2001 to 2008, we predict and find a non-linear relationship between ownership concentration and the timeliness of price discovery. We test the identity of the largest shareholder and find that only firms with family as the largest shareholder exhibit faster price discovery. There is no evidence that suggests that the presence of a second largest shareholder affects the timeliness of price discovery materially. Although we find a positive association between corporate governance quality and the timeliness of price discovery, as expected, there is no interaction effect between the largest shareholding and corporate governance in relation to the timeliness of price discovery. Further tests show no evidence of severe endogeneity problems in our study.
Resumo:
This article outlines the impact that a conspiracy of silence and denial of difference has had on some adopted and donor conceived persons who have been lied to or misled about their origins. Factors discussed include deceit - expressed as a central secret which undermines the fabric of a family and through distortion mystifies communication processes; the shock of discovery - often revealed accidentally and the associated sense of betrayal when this occurs; and a series of losses, for example, kinship, medical history, culture and agency which result in having to rebuild personal identity. By providing those affected with a voice, validation and vindication healing can begin. Any feelings of disregard, of betrayal of trust, of anger, frustration, sorrow or loss, need to be regarded as real, expected, and above all, a valid reaction to what has occurred. The author is a 'late discoverer' of her adoption and draws on the information from her doctoral research on the same topic which was completed in 2012.
Resumo:
Some children adopted under the now discredited period of closed adoption were never told of their adoptive status until it was revealed to them in adulthood. Yet to date, this ‘late-discovery’ experience has received little research attention. Now a new generation of ‘late discoverers’ is emerging as a result of (heterosexual couple) donor insemination (DI) practices. This study of 25 late-discovery participants of either adoptive or (heterosexual couple) DI offspring status reveals ethical concerns particular to the lateness of discovery. Most of the participants were Australian, with the remainder from the UK, USA and Canada. All were asked to give an ‘open’ account of their experience, with four themes or suggestions provided on request. These accounts were added to those available in relevant publications. The analysis employed a hermeneutic phenomenological methodology and all accounts were analysed using an ethical perspective developed by Walker (2006, 2007). The main themes that emerged were: disrupted personal autonomy, betrayal of deep levels of trust and feelings of injustice and diminished self-worth. The lack of recognition of concerns particular to late discovery has resulted in late discoverers (i) feeling unable to regain a sense of personal control, (ii) significantly disrupted relationships with those closest to them and others, including community and institutions, and (iii) feelings of diminished value and self-worth.
Resumo:
Cross-Lingual Link Discovery (CLLD) is a new problem in Information Retrieval. The aim is to automatically identify meaningful and relevant hypertext links between documents in different languages. This is particularly helpful in knowledge discovery if a multi-lingual knowledge base is sparse in one language or another, or the topical coverage in each language is different; such is the case with Wikipedia. Techniques for identifying new and topically relevant cross-lingual links are a current topic of interest at NTCIR where the CrossLink task has been running since the 2011 NTCIR-9. This paper presents the evaluation framework for benchmarking algorithms for cross-lingual link discovery evaluated in the context of NTCIR-9. This framework includes topics, document collections, assessments, metrics, and a toolkit for pooling, assessment, and evaluation. The assessments are further divided into two separate sets: manual assessments performed by human assessors; and automatic assessments based on links extracted from Wikipedia itself. Using this framework we show that manual assessment is more robust than automatic assessment in the context of cross-lingual link discovery.
Resumo:
This paper presents an overview of NTCIR-10 Cross-lingual Link Discovery (CrossLink-2) task. For the task, we continued using the evaluation framework developed for the NTCIR-9 CrossLink-1 task. Overall, recommended links were evaluated at two levels (file-to-file and anchor-to-file); and system performance was evaluated with metrics: LMAP, R-Prec and P@N.
Resumo:
Lanthanum Strontium Manganate (LSM) powders were synthesized by six different routes, namely solid state reaction, drip pyrolysis, citrate, sol-gel, carbonate and oxalate co-precipitation. The LSM samples, produced by firing to 1000 °C for 5 h were then characterized by way of XRD, TPD's of oxygen, TPR and catalytic activity for a simple oxidation reaction, that of carbon monoxide to carbon dioxide. It was found that although the six samples had similar compositions and surface areas they performed quite differently during catalytic characterization. These observed differences correlated more closely to the mode of synthesis, than to the physical properties of the powders, or their impurity levels, indicating that the surface structures created by the different syntheses perform very differently under catalysis conditions. Co-precipitation and drip pyrolysis produced structures that were most efficient at facilitating oxidation type reactions.
Resumo:
To enhance the therapeutic efficacy and reduce the adverse effects of traditional Chinese medicine, practitioners often prescribe combinations of plant species and/or minerals, called formulae. Unfortunately, the working mechanisms of most of these compounds are difficult to determine and thus remain unknown. In an attempt to address the benefits of formulae based on current biomedical approaches, we analyzed the components of Yinchenhao Tang, a classical formula that has been shown to be clinically effective for treating hepatic injury syndrome. The three principal components of Yinchenhao Tang are Artemisia annua L., Gardenia jasminoids Ellis, and Rheum Palmatum L., whose major active ingredients are 6,7-dimethylesculetin (D), geniposide (G), and rhein (R), respectively. To determine the mechanisms underlying the efficacy of this formula, we conducted a systematic analysis of the therapeutic effects of the DGR compound using immunohistochemistry, biochemistry, metabolomics, and proteomics. Here, we report that the DGR combination exerts a more robust therapeutic effect than any one or two of the three individual compounds by hitting multiple targets in a rat model of hepatic injury. Thus, DGR synergistically causes intensified dynamic changes in metabolic biomarkers, regulates molecular networks through target proteins, has a synergistic/additive effect, and activates both intrinsic and extrinsic pathways.
Resumo:
This thesis is a study for automatic discovery of text features for describing user information needs. It presents an innovative data-mining approach that discovers useful knowledge from both relevance and non-relevance feedback information. The proposed approach can largely reduce noises in discovered patterns and significantly improve the performance of text mining systems. This study provides a promising method for the study of Data Mining and Web Intelligence.
Resumo:
Presently organisations engage in what is termed as Global Business Transformation Projects [GBTPs], for consolidating, innovating, transforming and restructuring their processes and business strategies while undergoing fundamental change. Culture plays an important role in global business transformation projects as these involve people of different cultural backgrounds and span across countries, industries and disciplinary boundaries. Nevertheless, there is scant empirical research on how culture is conceptualised beyond national and organisational cultures but also on how culture is to be taken into account and dealt with within global business transformation projects. This research is situated in a business context and discovers a theory that aids in describing and dealing with culture. It draws on the lived experiences of thirty-two senior management practitioners, reporting on more than sixty-one global business transformation projects in which they were actively involved. The research method used is a qualitative and interpretive one and applies a grounded theory approach, with rich data generated through interviews. In addition, vignettes were developed to illustrate the derived theoretical models. The findings from this study contribute to knowledge in multiple ways. First, it provides a holistic account of global business transformation projects that describe the construct of culture by the elements of culture types, cultural differences and cultural diversity. A typology of culture types has been developed which enlarges the view of culture beyond national and organisational culture including an industry culture, professional service firm culture and 'theme' culture. The amalgamation of the culture types instantiated in a global business transformation project compromises its project culture. Second, the empirically grounded process for managing culture in global business transformation projects integrates the stages of recognition, understanding and management as well as the enablement providing a roadmap for dealing with culture in global business transformation projects. Third, this study identified contextual variables to global business transformation projects, which provide the means of describing the environment global business transformation projects are situated, influence the construct of culture and inform the process for managing culture. Fourth, the contribution to the research method is the positioning of interview research as a strategy for data generation and the detailed documentation applying grounded theory to discover theory.
Resumo:
This paper evaluates the efficiency of a number of popular corpus-based distributional models in performing discovery on very large document sets, including online collections. Literature-based discovery is the process of identifying previously unknown connections from text, often published literature, that could lead to the development of new techniques or technologies. Literature-based discovery has attracted growing research interest ever since Swanson's serendipitous discovery of the therapeutic effects of fish oil on Raynaud's disease in 1986. The successful application of distributional models in automating the identification of indirect associations underpinning literature-based discovery has been heavily demonstrated in the medical domain. However, we wish to investigate the computational complexity of distributional models for literature-based discovery on much larger document collections, as they may provide computationally tractable solutions to tasks including, predicting future disruptive innovations. In this paper we perform a computational complexity analysis on four successful corpus-based distributional models to evaluate their fit for such tasks. Our results indicate that corpus-based distributional models that store their representations in fixed dimensions provide superior efficiency on literature-based discovery tasks.
Resumo:
In vivo small molecules as necessary intermediates are involved in numerous critical metabolic pathways and biological processes associated with many essential biological functions and events. There is growing evidence that MS-based metabolomics is emerging as a powerful tool to facilitate the discovery of functional small molecules that can better our understanding of development, infection, nutrition, disease, toxicity, drug therapeutics, gene modifications and host-pathogen interaction from metabolic perspectives. However, further progress must still be made in MS-based metabolomics because of the shortcomings in the current technologies and knowledge. This technique-driven review aims to explore the discovery of in vivo functional small molecules facilitated by MS-based metabolomics and to highlight the analytic capabilities and promising applications of this discovery strategy. Moreover, the biological significance of the discovery of in vivo functional small molecules with different biological contexts is also interrogated at a metabolic perspective.