980 resultados para relational quantum theory
Resumo:
We propose a review of recent developments on entanglement and nonclassical effects in collective two-atom systems and present a uniform physical picture of the many predicted phenomena. The collective effects have brought into sharp focus some of the most basic features of quantum theory, such as nonclassical states of light and entangled states of multiatom systems. The entangled states are linear superpositions of the internal states of the system which cannot be separated into product states of the individual atoms. This property is recognized as entirely quantum-mechanical effect and have played a crucial role in many discussions of the nature of quantum measurements and, in particular, in the developments of quantum communications. Much of the fundamental interest in entangled states is connected with its practical application ranging from quantum computation, information processing, cryptography, and interferometry to atomic spectroscopy.
Resumo:
A versatile miniature de Broglie waveguide is formed by two parallel current-carrying wires in the presence of a uniform bias field. We derive a variety of analytical expressions to describe the guide and present a quantum theory to show that it offers a remarkable range of possibilities for atom manipulation on the submicron scale. These include controlled and coherent splitting of the wave function as well as cooling, trapping, and guiding. In particular, we discuss a novel microscopic atom interferometer with the potential to be exceedingly sensitive.
Resumo:
We present a potential realization of the Greenberger-Horne-Zeilinger all or nothing contradiction of quantum mechanics with local realism using phase measurement techniques in a simple photon number triplet. Such a triplet could be generated using nondegenerate parametric oscillation. [S0031-9007(98)07671-6].
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
We propose a simple modification of the experimental scheme employed by Brune rt ni. [Phys. Rev. Lett. 79, 4887 (1996)] for the generation and detection of a Schrodinger cat state, in which the decoherence of the cat state can be significantly slowed down using an appropriate feedback.
Resumo:
We study the scattering of the quantized electromagnetic field from a linear, dispersive dielectric using the scattering formalism for quantum fields. The medium is modeled as a collection of harmonic oscillators with a number of distinct resonance frequencies. This model corresponds to the Sellmeir expansion, which is widely used to describe experimental data for real dispersive media. The integral equation for the interpolating field in terms of the in field is solved and the solution used to find the out field. The relation between the ill and out creation and annihilation operators is found that allows one to calculate the S matrix for this system. In this model, we find that there are absorption bands, but the input-output relations are completely unitary. No additional quantum-noise terms are required.
Resumo:
We generate and characterize continuous variable polarization entanglement between two optical beams. We first produce quadrature entanglement, and by performing local operations we transform it into a polarization basis. We extend two entanglement criteria, the inseparability criteria proposed by Duan et al (2000 Phys. Rev. Lett. 84 2722) and the Einstein–Podolsky–Rosen (EPR) paradox criteria proposed by Reid and Drummond (1988 Phys. Rev. Lett. 60 2731), to Stokes operators; and use them to characterize the entanglement. Our results for the EPR paradox criteria are visualized in terms of uncertainty balls on the Poincaré sphere. We demonstrate theoretically that using two quadrature entangled pairs it is possible to entangle three orthogonal Stokes operators between a pair of beams, although with a bound √3 times more stringent than for the quadrature entanglement.
Resumo:
The electron localization function (ELF) has been proven so far a valuable tool to determine the location of electron pairs. Because of that, the ELF has been widely used to understand the nature of the chemical bonding and to discuss the mechanism of chemical reactions. Up to now, most applications of the ELF have been performed with monodeterminantal methods and only few attempts to calculate this function for correlated wave functions have been carried out. Here, a formulation of ELF valid for mono- and multiconfigurational wave functions is given and compared with previous recently reported approaches. The method described does not require the use of the homogeneous electron gas to define the ELF, at variance with the ELF definition given by Becke. The effect of the electron correlation in the ELF, introduced by means of configuration interaction with singles and doubles calculations, is discussed in the light of the results derived from a set of atomic and molecular systems
Resumo:
The new complex, [Zr(pda)2]n (1, pda2- = N,N'-bis(neo-pentyl)-ortho-phenylenediamide, n = 1 or 2), prepared by the reaction of 2 equiv of pdaLi2 with ZrCl4, reacts rapidly with halogen oxidants to afford the new product ZrX2(disq)2 (3, X = Cl, Br, I; disq- = N,N'-bis(neo-pentyl)-ortho-diiminosemiquinonate) in which each redox-active ligand has been oxidized by one electron. The oxidation products 3a-c have been structurally characterized and display an unusual parallel stacked arrangement of the disq- ligands in the solid state, with a separation of approximately 3 A. Density functional calculations show a bonding-type interaction between the SOMOs of the disq- ligands to form a unique HOMO while the antibonding linear combination forms a unique LUMO. This orbital configuration leads to a closed-shell-singlet ground-state electron configuration (S = 0). Temperature-dependent magnetism measurements indicate a low-lying triplet excited state at approximately 750 cm-1. In solution, 3a-c show strong disq--based absorption bands that are invariant across the halide series. Taken together these spectroscopic measurements provide experimental values for the one- and two-electron energies that characterize the pi-stacked bonding interaction between the two disq- ligands.
Resumo:
This paper provides an explicit cofibrant resolution of the operad encoding Batalin-Vilkovisky algebras. Thus it defines the notion of homotopy Batalin-Vilkovisky algebras with the required homotopy properties. To define this resolution we extend the theory of Koszul duality to operads and properads that are defind by quadratic and linear relations. The operad encoding Batalin-Vilkovisky algebras is shown to be Koszul in this sense. This allows us to prove a Poincare-Birkhoff-Witt Theorem for such an operad and to give an explicit small quasi-free resolution for it. This particular resolution enables us to describe the deformation theory and homotopy theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on homology. The same result is proved for the singular chain complex of the double loop space of a topological space endowed with an action of the circle. We also prove the cyclic Deligne conjecture with this cofibrant resolution of the operad BV. We develop the general obstruction theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of Lian-Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra structure.
Resumo:
Using a finite-range density functional, we have investigated the energetics and structural features of mixed helium clusters. The possibility of doping the cluster with a molecule of sulfur hexafluoride is also considered. It is seen that the repulsion introduced by the impurity strongly modifies the properties of the smallest drops. Although only a qualitative comparison is possible, the gross features displayed by our calculations are in agreement with recent experimental findings.
Resumo:
We discuss the relation between continuum bound states (CBSs) localized on a defect, and surface states of a finite periodic system. We model an experiment of Capasso et al. [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S-N. G. Chu, and A. Y. Cho, Nature (London) 358, 565 (1992)] using the transfer-matrix method. We compute the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show how to improve the confinement of a CBS while keeping the energy fixed.