989 resultados para redox conditions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-channel recordings were obtained from Chinese hamster ovary cells transfected with the N-methyl-d-aspartate (NMDA) receptor subunit NR1 in combination with NR2A, NR2B, NR2C, or NR2A/NR2B. NMDA-activated currents were recorded under control conditions and in the presence of a thiol reductant (DTT), an oxidant (5,5′-dithio-bis[2-nitrobenzoic acid], DTNB), or the noncompetitive antagonist CP101,606 (CP). For all subunit combinations, DTT increased the frequency of channel opening when compared with DTNB. In addition, channels obtained from NR1/NR2A-transfected cells also exhibited a pronounced difference in mean open dwell-time between redox conditions. CP dramatically reduced both the open dwell-time and frequency of channel opening of NR1/NR2B-containing receptors, but only modestly inhibited NR1/NR2A and NR1/NR2C channel activity. A small number of patches obtained from cells transfected with NR1/NR2A/NR2B had channels with properties intermediate to NR1/NR2A and NR1/NR2B receptors, including insensitivity to CP block but redox properties similar to NR1/NR2B, consistent with the coassembly of NR2A with NR2B. Hence, NMDA receptors containing multiple types of NR2 subunits can have functionally distinguishable attributes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combined structural and biochemical studies on Lac repressor bound to operator DNA have demonstrated the central role of the hinge helices in operator bending and the induction mechanism. We have constructed a covalently linked dimeric Lac-headpiece that binds DNA with four orders of magnitude higher affinity as compared with the monomeric form. This enabled a detailed biochemical and structural study of Lac binding to its cognate wild-type and selected DNA operators. The results indicate a profound contribution of hinge helices to the stability of the protein–DNA complex and highlight their central role in operator recognition. Furthermore, protein–DNA interactions in the minor groove appear to modulate hinge helix stability, thus accounting for affinity differences and protein-induced DNA bending among the various operator sites. Interestingly, the in vitro DNA-binding affinity of the reported dimeric Lac construct can de readily modulated by simple adjustment of redox conditions, thus rendering it a potential artificial gene regulator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Patterns of regeneration and burial of phosphorus (P) in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the well-documented link between iron oxyhydroxide dissolution and release of P from Baltic Sea sediments, we show that preferential remineralization of P with respect to carbon (C) and nitrogen (N) during degradation of organic matter plays a key role in determining the surplus of bioavailable P in the water column. Preferential remineralization of P takes place both in the water column and upper sediments and its rate is shown to be redox-dependent, increasing as reducing conditions become more severe at greater water-depth in the deep basins. Existing Redfield-based biogeochemical models of the Baltic may therefore underestimate the imbalance between N and P availability for primary production, and hence the vulnerability of the Baltic to sustained eutrophication via the fixation of atmospheric N. However, burial of organic P is also shown to increase during multidecadal intervals of expanded hypoxia, due to higher net burial rates of organic matter around the margins of the deep basins. Such intervals may be characterized by basin-scale acceleration of all fluxes within the P cycle, including productivity, regeneration and burial, sustained by the relative accessibility of the water column P pool beneath a shallow halocline.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Major elements, S, F, Cl concentrations and relative proportions of S6+ to total S were analyzed with electron microprobe in sideromelane glass shards from Pleistocene volcaniclastic sediments drilled during ODP Leg 157. Glasses are moderately to strongly evolved and represent a spectrum from alkali basalt, basanite and nephelinite through hawaiite, mugearite and tephrite to phonolitic tephrite. Measured S6+/SumS (0.03±0.98) and calculated Fe2+/Fe3+ (2.5±5.8) ratios in the melt yield preeruptive redox conditions ranging from NNO-1.4 to NNO+2.1. The morphology of the glass shards, variations of S and Cl concentrations (0.010±0.127 wt% S, 0.018±0.129 wt% Cl), calculated preeruptive temperatures (1030±1200 °C) and oxygen fugacities suggest that glasses deposited even within the same ash layers have diverse origin and may have resulted from both submarine and subaerial eruptions. Most vesicle-free glasses are characterized by high concentrations of S and represent undegassed or slightly degassed submarine lavas, whereas vesiculated glasses with low concentrations of S and Cl are strongly degassed and can be ascribed to the eruptions in shallow water or on land. Sideromelane glass shards at Sites 953 are thought to have resulted from submarine eruptions northeast of Gran Canaria, glasses at Site 954 represent mostly volcaniclastic material of shallow water submarine and subaerial eruptions on Gran Canaria and Tenerife, and glasses deposited at Site 956 resulted from submarine or explosive eruptions on Tenerife.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We determined the sedimentary concentrations of phosphorus (P), barium (Ba), manganese (Mn), titanium (Ti), aluminum (Al), and uranium (U) for sediment samples from the southeast Pacific Nazca Ridge, Ocean Drilling Program Site 1237. This unique record extends to 31 Ma over 360 meters composite depth (mcd), recording depositional history as the site progressed eastward over its paleohistory. We sampled with a temporal resolution of ~0.2 m.y. throughout the sequence, equivalent to an average spacing of 1.63 m/sample. Concentrations of sequentially extracted components of P (oxide-associated, authigenic, organic, and detrital) increase toward the modern. Al/Ti ratios indicate that the background detrital source material is consistent with upper continental crust. U enrichment factors (U EFs) generally exceed crustal values and indicate slightly reducing environments. However, authigenic U precipitation can also be influenced by the organic carbon rain rate and may not be solely an indicator of redox conditions. Dramatic changes in Mn EFs at ~162 mcd, from values between 12 and 93 to values <12 after this depth, and a sharp color contact boundary lead us to believe that a paleoredox boundary from an oxygenated to a more reducing depositional environment occurred near this depth. Estimates of biogenic barite concentrations from a total sediment digestion technique (Ba excess) are greater than those from a barite extraction (Ba barite) for selected samples across the entire depth range. Applying a range of Ba/Ti ratios from different source materials to correct for detrital inputs does not change the lack of agreement with Ba barite concentrations. Reactive P (P reactive) concentrations (the sum of oxide-associated, authigenic, and organic P concentrations) increase toward the modern with values typically <12 µmol P/g from the base of our record through ~100 mcd, with a gradual increase to concentrations >15 µmol P/g. Ba excess follows the same general trends as Preactive, with concentrations <14 µmol Ba/g in the lower portion of the record to values >15 µmol Ba/g. Accumulation rate records of these proxies will be needed to infer paleoproductivity. P reactive/Ba excess ratios, an indicator of the relative burial of the nutrient P to organic carbon export, exhibit higher values, similar to modern, from the base of our record through ~180 mcd. The remainder of the record exhibits values lower than modern, indicating that organic carbon export to the sediments was higher relative to nutrient burial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Remineralization of organic matter in reactive marine sediments releases nutrients and dissolved organic matter (DOM) into the ocean. Here we focused on the molecular-level characterization of DOM by high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in sediment pore waters and bottom waters from contrasting redox regimes in the northern Black Sea with particular emphasis on nitrogen-bearing compounds to derive an improved understanding of the molecular transformations involved in nitrogen release. The number of nitrogen-bearing molecules is generally higher in pore waters than in bottom waters. This suggests intensified degradation of nitrogen-bearing precursor molecules such as proteins in anoxic sediments: No significant difference was observed between sediments deposited under oxic vs anoxic conditions (average O/C ratios of 0.55) suggesting that the different organic matter quality induced by contrasting redox conditions does not impact protein diagenesis in the subseafloor. Compounds in the pore waters were on average larger, less oxygenated, and had a higher number of unsaturations. Applying a mathematical model, we could show that the assemblages of nitrogen-bearing molecular formulas are potential products of proteinaceous material that was transformed by the following reactions: (a) hydrolysis and deamination, both reducing the molecular size and nitrogen content of the products and intermediates; (b) oxidation and hydration of the intermediates; and (c) methylation and dehydration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We measured the concentrations of redox-sensitive trace metals (Mn, V, Mo, U, Cd and Re) in sediments from ODP Leg 169S Hole 1033B in Saanich Inlet, British Columbia, to determine changes in redox conditions associated with the onset of laminated sediments at ~12.5 kyr. The most striking result is a large peak in authigenic Re along with detrital levels of Mo at the glacial terrigenous clay-diatomaceous sediment transition. In contrast, the underlying glacial terrigenous clay, which extends throughout the bottom section of the core, is chemically similar to detrital concentrations, either Cowichan River particulates or average shale values. These data suggest a period of oxic bottom waters but reducing pore-waters. This could be due to the dramatic transformation of Saanich Inlet during the late deglaciation from an open bay to an inlet, which restricted circulation and slowed bottom water oxygen renewal. A peak and gradual increase in authigenic Mn in younger sediments subsequent to the Re peak suggests that increasingly oxic conditions followed the authigenic enrichment in Re. These conditions could be connected to the Younger Dryas cooling period, which was coincident with an increase in well oxygenated upwelled waters on the west coast of North America that form the bottom waters of Saanich Inlet. Metal concentrations in a gray clay bed (~11 kyr) are similar to their concentrations in the glacial terrigenous clay, implying that they have a common source. Authigenic enrichments of Re with little authigenic Mo and Cd suggest that before the deposition of this bed, bottom waters were oxic and pore-water oxygen was consumed in the top centimeter or less. Laminations above the clay layer suggest anoxic conditions, which are also indicated by higher authigenic Mo and Cd and slightly lower Re/Mo ratios in these sediments. The basin remained mostly anoxic after the gray clay was emplaced, as seen by continuous authigenic enrichment of the redox-sensitive trace metals. These results are consistent with increased stratification of the water column, brought about by an influx of fresh water to the basin by a large flood.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Higher resolution pore-water samples were recovered at intervals of 0.3 to 3 m from selected cores during Leg 119 in order to identify zones where active geochemical reactions were occurring. In addition to shipboard measurements, solid- and dissolved-phase samples were analyzed at my shore-based laboratory. Solid-phase samples were analyzed for redox conditions, carbon, total metals, and leachable metals. Pore-water samples were analyzed for ammonia, silica, sulfate, and major cations. Data are presented in tables for 400 samples from Site 739 in Prydz Bay, East Antarctica, and Sites 736, 737, 738, 744, 745, and 746 at the Kerguelen Ridge, South Indian Ocean.