568 resultados para pulsar planets
Resumo:
Context. To date, calculations of planet formation have mainly focused on dynamics, and only a few have considered the chemical composition of refractory elements and compounds in the planetary bodies. While many studies have been concentrating on the chemical composition of volatile compounds (such as H2O, CO, CO2) incorporated in planets, only a few have considered the refractory materials as well, although they are of great importance for the formation of rocky planets. Aims. We computed the abundance of refractory elements in planetary bodies formed in stellar systems with a solar chemical composition by combining models of chemical composition and planet formation. We also considered the formation of refractory organic compounds, which have been ignored in previous studies on this topic. Methods. We used the commercial software package HSC Chemistry to compute the condensation sequence and chemical composition of refractory minerals incorporated into planets. The problem of refractory organic material is approached with two distinct model calculations: the first considers that the fraction of atoms used in the formation of organic compounds is removed from the system (i.e., organic compounds are formed in the gas phase and are non-reactive); and the second assumes that organic compounds are formed by the reaction between different compounds that had previously condensed from the gas phase. Results. Results show that refractory material represents more than 50 wt % of the mass of solids accreted by the simulated planets with up to 30 wt % of the total mass composed of refractory organic compounds. Carbide and silicate abundances are consistent with C/O and Mg/Si elemental ratios of 0.5 and 1.02 for the Sun. Less than 1 wt % of carbides are present in the planets, and pyroxene and olivine are formed in similar quantities. The model predicts planets that are similar in composition to those of the solar system. Starting from a common initial nebula composition, it also shows that a wide variety of chemically different planets can form, which means that the differences in planetary compositions are due to differences in the planetary formation process. Conclusions. We show that a model in which refractory organic material is absent from the system is more compatible with observations. The use of a planet formation model is essential to form a wide diversity of planets in a consistent way.
Resumo:
Context. Solar and extrasolar planets are the subject of numerous studies aiming to determine their chemical composition and internal structure. In the case of extrasolar planets, the composition is important as it partly governs their potential habitability. Moreover, observational determination of chemical composition of planetary atmospheres are becoming available, especially for transiting planets. Aims. The present works aims at determining the chemical composition of planets formed in stellar systems of solar chemical composition. The main objective of this work is to provide valuable theoretical data for models of planet formation and evolution, and future interpretation of chemical composition of solar and extrasolar planets. Methods. We have developed a model that computes the composition of ices in planets in different stellar systems with the use of models of ice and planetary formation. Results. We provide the chemical composition, ice/rock mass ratio and C:O molar ratio for planets in stellar systems of solar chemical composition. From an initial homogeneous composition of the nebula, we produce a wide variety of planetary chemical compositions as a function of the mass of the disk and distance to the star. The volatile species incorporated in planets are mainly composed of H2O, CO, CO2, CH3OH, and NH3. Icy or ocean planets have systematically higher values of molecular abundances compared to giant and rocky planets. Gas giant planets are depleted in highly volatile molecules such as CH4, CO, and N2 compared to icy or ocean planets. The ice/rock mass ratio in icy or ocean and gas giant planets is, respectively, equal at maximum to 1.01 ± 0.33 and 0.8 ± 0.5, and is different from the usual assumptions made in planet formation models, which suggested this ratio to be 2–3. The C:O molar ratio in the atmosphere of gas giant planets is depleted by at least 30% compared to solar value.
Resumo:
We describe radial-velocity time series obtained by HARPS on the 3.60 m telescope in La Silla (ESO, Chile) over ten years and report the discovery of five new giant exoplanets in distant orbits; these new planets orbit the stars HD 564, HD 30669, HD 108341, and BD -114672. Their periods range from 492 to 1684 days, semi-major axes range from 1.2 to 2.69 AU, and eccentricities range from 0 to 0.85. Their minimum mass ranges from 0.33 to 3.5 MJup. We also refine the parameters of two planets announced previously around HD 113538, based on a longer series of measurements. The planets have a period of 663 ± 8 and 1818 ± 25 days, orbital eccentricities of 0.14 ± 0.08 and 0.20 ± 0.04, and minimum masses of 0.36 ± 0.04 and 0.93 ± 0.06 MJup. Finally, we report the discovery of a new hot-Jupiter planet around an active star, HD 103720; the planet has a period of 4.5557 ± 0.0001 days and a minimum mass of 0.62 ± 0.025 MJup. We discuss the fundamental parameters of these systems and limitations due to stellar activity in quiet stars with typical 2 m s-1 radial velocity precision.
Resumo:
We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 M-earth), the overall maximum that a planet can have varies between 1.8 and 2.3 R-earth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.
Resumo:
Ocean planets are volatile-rich planets, not present in our Solar system, which are thought to be dominated by deep, global oceans. This results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. Therefore, instead of a carbonate-silicate cycle like on the Earth, the atmospheric carbon dioxide concentration is governed by the capability of the ocean to dissolve carbon dioxide (CO2). In our study, we focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree. In contrast to the stabilizing carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle feedback on ocean planets is negative and has strong destabilizing effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle can severely limit the extension of the habitable zone for ocean planets.
Resumo:
The discovery of over a dozen low-mass companions to nearby stars has intensified scientific and public interest in a longer term search for habitable planets like our own. However, the nature of the detected companions, and in particular whether they resemble Jupiter in properties and origin, remains undetermined.
Resumo:
Until the mid-1990s a person could not point to any celestial object and say with assurance that “here is a brown dwarf.” Now dozens are known, and the study of brown dwarfs has come of age, touching upon major issues in astrophysics, including the nature of dark matter, the properties of substellar objects, and the origin of binary stars and planetary systems.
Resumo:
The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.
Resumo:
Context. The rotational evolution of isolated neutron stars is dominated by the magnetic field anchored to the solid crust of the star. Assuming that the core field evolves on much longer timescales, the crustal field evolves mainly though Ohmic dissipation and the Hall drift, and it may be subject to relatively rapid changes with remarkable effects on the observed timing properties. Aims. We investigate whether changes of the magnetic field structure and strength during the star evolution may have observable consequences in the braking index n. This is the most sensitive quantity to reflect small variations of the timing properties that are caused by magnetic field rearrangements. Methods. We performed axisymmetric, long-term simulations of the magneto-thermal evolution of neutron stars with state-of-the-art microphysical inputs to calculate the evolution of the braking index. Relatively rapid magnetic field modifications can be expected only in the crust of neutron stars, where we focus our study. Results. We find that the effect of the magnetic field evolution on the braking index can be divided into three qualitatively different stages depending on the age and the internal temperature: a first stage that may be different for standard pulsars (with n ~ 3) or low field neutron stars that accreted fallback matter during the supernova explosion (systematically n < 3); in a second stage, the evolution is governed by almost pure Ohmic field decay, and a braking index n > 3 is expected; in the third stage, at late times, when the interior temperature has dropped to very low values, Hall oscillatory modes in the neutron star crust result in braking indices of a high absolute value and both positive and negative signs. Conclusions. Current magneto-thermal evolution models predict a large contribution to the timing noise and, in particular, to the braking index, from temporal variations of the magnetic field. Models with strong (≳ 1014 G) multipolar or toroidal components, even with a weak (~1012 G) dipolar field are consistent with the observed trend of the timing properties.
Resumo:
The center of our Galaxy hosts a supermassive black hole, Sagittarius (Sgr) A∗. Young, massive stars within 0.5 pc of Sgr A∗ are evidence of an episode of intense star formation near the black hole a few million years ago, which might have left behind a young neutron star traveling deep into Sgr A∗’s gravitational potential. On 2013 April 25, a short X-ray burst was observed from the direction of the Galactic center. With a series of observations with the Chandra and the Swift satellites, we pinpoint the associated magnetar at an angular distance of 2.4±0.3 arcsec from Sgr A∗, and refine the source spin period and its derivative (P = 3.7635537(2) s and ˙ P = 6.61(4) × 10−12 s s−1), confirmed by quasi simultaneous radio observations performed with the Green Bank Telescope and Parkes Radio Telescope, which also constrain a dispersion measure of DM = 1750 ± 50 pc cm−3, the highest ever observed for a radio pulsar. We have found that this X-ray source is a young magnetar at ≈0.07–2 pc from Sgr A∗. Simulations of its possible motion around Sgr A∗ show that it is likely (∼90% probability) in a bound orbit around the black hole. The radiation front produced by the past activity from the magnetar passing through the molecular clouds surrounding the Galactic center region might be responsible for a large fraction of the light echoes observed in the Fe fluorescence features.
Resumo:
The unprecedented sensitivity and large field of view of SKA will be of paramount importance for pulsar science, and for many related research fields. In particular, beside the obvious discovery of many more pulsars (even those with very low luminosity), and the extremely accurate timing analysis of the current pulsar population, SKA will allow to use pulsars to measure or put strong constraints on gravitational waves, Galactic magnetism, planet masses, general relativity and nuclear physics.