11 resultados para pulsar planets

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncovering the demographics of extrasolar planets is crucial to understanding the processes of their formation and evolution. In this thesis, we present four studies that contribute to this end, three of which relate to NASA's Kepler mission, which has revolutionized the field of exoplanets in the last few years.

In the pre-Kepler study, we investigate a sample of exoplanet spin-orbit measurements---measurements of the inclination of a planet's orbit relative to the spin axis of its host star---to determine whether a dominant planet migration channel can be identified, and at what confidence. Applying methods of Bayesian model comparison to distinguish between the predictions of several different migration models, we find that the data strongly favor a two-mode migration scenario combining planet-planet scattering and disk migration over a single-mode Kozai migration scenario. While we test only the predictions of particular Kozai and scattering migration models in this work, these methods may be used to test the predictions of any other spin-orbit misaligning mechanism.

We then present two studies addressing astrophysical false positives in Kepler data. The Kepler mission has identified thousands of transiting planet candidates, and only relatively few have yet been dynamically confirmed as bona fide planets, with only a handful more even conceivably amenable to future dynamical confirmation. As a result, the ability to draw detailed conclusions about the diversity of exoplanet systems from Kepler detections relies critically on understanding the probability that any individual candidate might be a false positive. We show that a typical a priori false positive probability for a well-vetted Kepler candidate is only about 5-10%, enabling confidence in demographic studies that treat candidates as true planets. We also present a detailed procedure that can be used to securely and efficiently validate any individual transit candidate using detailed information of the signal's shape as well as follow-up observations, if available.

Finally, we calculate an empirical, non-parametric estimate of the shape of the radius distribution of small planets with periods less than 90 days orbiting cool (less than 4000K) dwarf stars in the Kepler catalog. This effort reveals several notable features of the distribution, in particular a maximum in the radius function around 1-1.25 Earth radii and a steep drop-off in the distribution larger than 2 Earth radii. Even more importantly, the methods presented in this work can be applied to a broader subsample of Kepler targets to understand how the radius function of planets changes across different types of host stars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsars emit radiation over an extremely wide frequency range, from radio through gamma. Recently, systems in which this radiation significantly alters the atmospheres of low-mass pulsar companions have been discovered. These systems, ranging from ones with highly anisotropic heating to those with transient X-ray emissions, represent an exciting opportunity to investigate pulsars through the changes they induce in their companions. In this work, we present both analytic and numerical work investigating these phenomena, with a particular focus on atmospheric heat transport, transient phenomena, and the possibility of deep heating via gamma rays. We find that certain classes of binary systems may explain decadal-timescale X-ray transient phenomena, as well as the formation of so-called redback companion systems. We also posit an explanation for the formation of high-eccentricity millisecond pulsars with white dwarf companions. In addition, we examine the temperature anisotropy induced by the Pulsar in its companion, and demonstrate that this may be used to infer properties of both the companion and the Pulsar wind. Finally, we explore the possibility of spontaneously generated banded winds in rapidly rotating convecting objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Home to hundreds of millions of souls and land of excessiveness, the Himalaya is also the locus of a unique seismicity whose scope and peculiarities still remain to this day somewhat mysterious. Having claimed the lives of kings, or turned ancient timeworn cities into heaps of rubbles and ruins, earthquakes eerily inhabit Nepalese folk tales with the fatalistic message that nothing lasts forever. From a scientific point of view as much as from a human perspective, solving the mysteries of Himalayan seismicity thus represents a challenge of prime importance. Documenting geodetic strain across the Nepal Himalaya with various GPS and leveling data, we show that unlike other subduction zones that exhibit a heterogeneous and patchy coupling pattern along strike, the last hundred kilometers of the Main Himalayan Thrust fault, or MHT, appear to be uniformly locked, devoid of any of the “creeping barriers” that traditionally ward off the propagation of large events. The approximately 20 mm/yr of reckoned convergence across the Himalaya matching previously established estimates of the secular deformation at the front of the arc, the slip accumulated at depth has to somehow elastically propagate all the way to the surface at some point. And yet, neither large events from the past nor currently recorded microseismicity nearly compensate for the massive moment deficit that quietly builds up under the giant mountains. Along with this large unbalanced moment deficit, the uncommonly homogeneous coupling pattern on the MHT raises the question of whether or not the locked portion of the MHT can rupture all at once in a giant earthquake. Univocally answering this question appears contingent on the still elusive estimate of the magnitude of the largest possible earthquake in the Himalaya, and requires tight constraints on local fault properties. What makes the Himalaya enigmatic also makes it the potential source of an incredible wealth of information, and we exploit some of the oddities of Himalayan seismicity in an effort to improve the understanding of earthquake physics and cipher out the properties of the MHT. Thanks to the Himalaya, the Indo-Gangetic plain is deluged each year under a tremendous amount of water during the annual summer monsoon that collects and bears down on the Indian plate enough to pull it away from the Eurasian plate slightly, temporarily relieving a small portion of the stress mounting on the MHT. As the rainwater evaporates in the dry winter season, the plate rebounds and tension is increased back on the fault. Interestingly, the mild waggle of stress induced by the monsoon rains is about the same size as that from solid-Earth tides which gently tug at the planets solid layers, but whereas changes in earthquake frequency correspond with the annually occurring monsoon, there is no such correlation with Earth tides, which oscillate back-and-forth twice a day. We therefore investigate the general response of the creeping and seismogenic parts of MHT to periodic stresses in order to link these observations to physical parameters. First, the response of the creeping part of the MHT is analyzed with a simple spring-and-slider system bearing rate-strengthening rheology, and we show that at the transition with the locked zone, where the friction becomes near velocity neutral, the response of the slip rate may be amplified at some periods, which values are analytically related to the physical parameters of the problem. Such predictions therefore hold the potential of constraining fault properties on the MHT, but still await observational counterparts to be applied, as nothing indicates that the variations of seismicity rate on the locked part of the MHT are the direct expressions of variations of the slip rate on its creeping part, and no variations of the slip rate have been singled out from the GPS measurements to this day. When shifting to the locked seismogenic part of the MHT, spring-and-slider models with rate-weakening rheology are insufficient to explain the contrasted responses of the seismicity to the periodic loads that tides and monsoon both place on the MHT. Instead, we resort to numerical simulations using the Boundary Integral CYCLes of Earthquakes algorithm and examine the response of a 2D finite fault embedded with a rate-weakening patch to harmonic stress perturbations of various periods. We show that such simulations are able to reproduce results consistent with a gradual amplification of sensitivity as the perturbing period get larger, up to a critical period corresponding to the characteristic time of evolution of the seismicity in response to a step-like perturbation of stress. This increase of sensitivity was not reproduced by simple 1D-spring-slider systems, probably because of the complexity of the nucleation process, reproduced only by 2D-fault models. When the nucleation zone is close to its critical unstable size, its growth becomes highly sensitive to any external perturbations and the timings of produced events may therefore find themselves highly affected. A fully analytical framework has yet to be developed and further work is needed to fully describe the behavior of the fault in terms of physical parameters, which will likely provide the keys to deduce constitutive properties of the MHT from seismological observations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From studies of protoplanetary disks to extrasolar planets and planetary debris, we aim to understand the full evolution of a planetary system. Observational constraints from ground- and space-based instrumentation allows us to measure the properties of objects near and far and are central to developing this understanding. We present here three observational campaigns that, when combined with theoretical models, reveal characteristics of different stages and remnants of planet formation. The Kuiper Belt provides evidence of chemical and dynamical activity that reveals clues to its primordial environment and subsequent evolution. Large samples of this population can only be assembled at optical wavelengths, with thermal measurements at infrared and sub-mm wavelengths currently available for only the largest and closest bodies. We measure the size and shape of one particular object precisely here, in hopes of better understanding its unique dynamical history and layered composition.

Molecular organic chemistry is one of the most fundamental and widespread facets of the universe, and plays a key role in planet formation. A host of carbon-containing molecules vibrationally emit in the near-infrared when excited by warm gas, T~1000 K. The NIRSPEC instrument at the W.M. Keck Observatory is uniquely configured to study large ranges of this wavelength region at high spectral resolution. Using this facility we present studies of warm CO gas in protoplanetary disks, with a new code for precise excitation modeling. A parameterized suite of models demonstrates the abilities of the code and matches observational constraints such as line strength and shape. We use the models to probe various disk parameters as well, which are easily extensible to others with known disk emission spectra such as water, carbon dioxide, acetylene, and hydrogen cyanide.

Lastly, the existence of molecules in extrasolar planets can also be studied with NIRSPEC and reveals a great deal about the evolution of the protoplanetary gas. The species we observe in protoplanetary disks are also often present in exoplanet atmospheres, and are abundant in Earth's atmosphere as well. Thus, a sophisticated telluric removal code is necessary to analyze these high dynamic range, high-resolution spectra. We present observations of a hot Jupiter, revealing water in its atmosphere and demonstrating a new technique for exoplanet mass determination and atmospheric characterization. We will also be applying this atmospheric removal code to the aforementioned disk observations, to improve our data analysis and probe less abundant species. Guiding models using observations is the only way to develop an accurate understanding of the timescales and processes involved. The futures of the modeling and of the observations are bright, and the end goal of realizing a unified model of planet formation will require both theory and data, from a diverse collection of sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planetary atmospheres exist in a seemingly endless variety of physical and chemical environments. There are an equally diverse number of methods by which we can study and characterize atmospheric composition. In order to better understand the fundamental chemistry and physical processes underlying all planetary atmospheres, my research of the past four years has focused on two distinct topics. First, I focused on the data analysis and spectral retrieval of observations obtained by the Ultraviolet Imaging Spectrograph (UVIS) instrument onboard the Cassini spacecraft while in orbit around Saturn. These observations consisted of stellar occultation measurements of Titan's upper atmosphere, probing the chemical composition in the region 300 to 1500 km above Titan's surface. I examined the relative abundances of Titan's two most prevalent chemical species, nitrogen and methane. I also focused on the aerosols that are formed through chemistry involving these two major species, and determined the vertical profiles of aerosol particles as a function of time and latitude. Moving beyond our own solar system, my second topic of investigation involved analysis of infra-red light curves from the Spitzer space telescope, obtained as it measured the light from stars hosting planets of their own. I focused on both transit and eclipse modeling during Spitzer data reduction and analysis. In my initial work, I utilized the data to search for transits of planets a few Earth masses in size. In more recent research, I analyzed secondary eclipses of three exoplanets and constrained the range of possible temperatures and compositions of their atmospheres.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygenic photosynthesis fundamentally transformed our planet by releasing molecular oxygen and altering major biogeochemical cycles, and this exceptional metabolism relies on a redox-active cubane cluster of four manganese atoms. Not only is manganese essential for producing oxygen, but manganese is also only oxidized by oxygen and oxygen-derived species. Thus the history of manganese oxidation provides a valuable perspective on our planet’s environmental past, the ancient availability of oxygen, and the evolution of oxygenic photosynthesis. Broadly, the general trends of the geologic record of manganese deposition is a chronicle of ancient manganese oxidation: manganese is introduced into the fluid Earth as Mn(II) and it will remain only a trace component in sedimentary rocks until it is oxidized, forming Mn(III,IV) insoluble precipitates that are concentrated in the rock record. Because these manganese oxides are highly favorable electron acceptors, they often undergo reduction in sediments through anaerobic respiration and abiotic reaction pathways.

The following dissertation presents five chapters investigating manganese cycling both by examining ancient examples of manganese enrichments in the geologic record and exploring the mineralogical products of various pathways of manganese oxide reduction that may occur in sediments. The first chapter explores the mineralogical record of manganese and reports abundant manganese reduction recorded in six representative manganese-enriched sedimentary sequences. This is followed by a second chapter that further analyzes the earliest significant manganese deposit 2.4 billon years ago, and determines that it predated the origin of oxygenic photosynthesis and thus is supporting evidence for manganese-oxidizing photosynthesis as an evolutionary precursor prior to oxygenic photosynthesis. The lack of oxygen during this early manganese deposition was partially established using oxygen-sensitive detrital grains, and so a third chapter delves into what these grains mean for oxygen constraints using a mathematical model. The fourth chapter returns to processes affecting manganese post-deposition, and explores the relationships between manganese mineral products and (bio)geochemical reduction processes to understand how various manganese minerals can reveal ancient environmental conditions and biological metabolisms. Finally, a fifth chapter considers whether manganese can be mobilized and enriched in sedimentary rocks and determines that manganese was concentrated secondarily in a 2.5 billion-year-old example from South Africa. Overall, this thesis demonstrates how microbial processes, namely photosynthesis and metal oxide-reducing metabolisms, are linked to and recorded in the rich complexity of the manganese mineralogical record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planets are assembled from the gas, dust, and ice in the accretion disks that encircle young stars. Ices of chemical compounds with low condensation temperatures (<200 K), the so-called volatiles, dominate the solid mass reservoir from which planetesimals are formed and are thus available to build the protoplanetary cores of gas/ice giant planets. It has long been thought that the regions near the condensation fronts of volatiles are preferential birth sites of planets. Moreover, the main volatiles in disks are also the main C-and O-containing species in (exo)planetary atmospheres. Understanding the distribution of volatiles in disks and their role in planet-formation processes is therefore of great interest.

This thesis addresses two fundamental questions concerning the nature of volatiles in planet-forming disks: (1) how are volatiles distributed throughout a disk, and (2) how can we use volatiles to probe planet-forming processes in disks? We tackle the first question in two complementary ways. We have developed a novel super-resolution method to constrain the radial distribution of volatiles throughout a disk by combining multi-wavelength spectra. Thanks to the ordered velocity and temperature profiles in disks, we find that detailed constraints can be derived even with spatially and spectrally unresolved data -- provided a wide range of energy levels are sampled. We also employ high-spatial resolution interferometric images at (sub)mm frequencies using the Atacama Large Millimeter Array (ALMA) to directly measure the radial distribution of volatiles.

For the second question, we combine volatile gas emission measurements with those of the dust continuum emission or extinction to understand dust growth mechanisms in disks and disk instabilities at planet-forming distances from the central star. Our observations and models support the idea that the water vapor can be concentrated in regions near its condensation front at certain evolutionary stages in the lifetime of protoplanetary disks, and that fast pebble growth is likely to occur near the condensation fronts of various volatile species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observational studies of our solar system's small-body populations (asteroids and comets) offer insight into the history of our planetary system, as these minor planets represent the left-over building blocks from its formation. The Palomar Transient Factory (PTF) survey began in 2009 as the latest wide-field sky-survey program to be conducted on the 1.2-meter Samuel Oschin telescope at Palomar Observatory. Though its main science program has been the discovery of high-energy extragalactic sources (such as supernovae), during its first five years PTF has collected nearly five million observations of over half a million unique solar system small bodies. This thesis begins to analyze this vast data set to address key population-level science topics, including: the detection rates of rare main-belt comets and small near-Earth asteroids, the spin and shape properties of asteroids as inferred from their lightcurves, the applicability of this visible light data to the interpretation of ultraviolet asteroid observations, and a comparison of the physical properties of main-belt and Jovian Trojan asteroids. Future sky-surveys would benefit from application of the analytical techniques presented herein, which include novel modeling methods and unique applications of machine-learning classification. The PTF asteroid small-body data produced in the course of this thesis work should remain a fertile source of solar system science and discovery for years to come.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.

The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.

Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.

Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.

We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.

The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.

We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most exciting discoveries in astrophysics of the last last decade is of the sheer diversity of planetary systems. These include "hot Jupiters", giant planets so close to their host stars that they orbit once every few days; "Super-Earths", planets with sizes intermediate to those of Earth and Neptune, of which no analogs exist in our own solar system; multi-planet systems with planets smaller than Mars to larger than Jupiter; planets orbiting binary stars; free-floating planets flying through the emptiness of space without any star; even planets orbiting pulsars. Despite these remarkable discoveries, the field is still young, and there are many areas about which precious little is known. In particular, we don't know the planets orbiting Sun-like stars nearest to our own solar system, and we know very little about the compositions of extrasolar planets. This thesis provides developments in those directions, through two instrumentation projects.

The first chapter of this thesis concerns detecting planets in the Solar neighborhood using precision stellar radial velocities, also known as the Doppler technique. We present an analysis determining the most efficient way to detect planets considering factors such as spectral type, wavelengths of observation, spectrograph resolution, observing time, and instrumental sensitivity. We show that G and K dwarfs observed at 400-600 nm are the best targets for surveys complete down to a given planet mass and out to a specified orbital period. Overall we find that M dwarfs observed at 700-800 nm are the best targets for habitable-zone planets, particularly when including the effects of systematic noise floors caused by instrumental imperfections. Somewhat surprisingly, we demonstrate that a modestly sized observatory, with a dedicated observing program, is up to the task of discovering such planets.

We present just such an observatory in the second chapter, called the "MINiature Exoplanet Radial Velocity Array," or MINERVA. We describe the design, which uses a novel multi-aperture approach to increase stability and performance through lower system etendue, as well as keeping costs and time to deployment down. We present calculations of the expected planet yield, and data showing the system performance from our testing and development of the system at Caltech's campus. We also present the motivation, design, and performance of a fiber coupling system for the array, critical for efficiently and reliably bringing light from the telescopes to the spectrograph. We finish by presenting the current status of MINERVA, operational at Mt. Hopkins observatory in Arizona.

The second part of this thesis concerns a very different method of planet detection, direct imaging, which involves discovery and characterization of planets by collecting and analyzing their light. Directly analyzing planetary light is the most promising way to study their atmospheres, formation histories, and compositions. Direct imaging is extremely challenging, as it requires a high performance adaptive optics system to unblur the point-spread function of the parent star through the atmosphere, a coronagraph to suppress stellar diffraction, and image post-processing to remove non-common path "speckle" aberrations that can overwhelm any planetary companions.

To this end, we present the "Stellar Double Coronagraph," or SDC, a flexible coronagraphic platform for use with the 200" Hale telescope. It has two focal and pupil planes, allowing for a number of different observing modes, including multiple vortex phase masks in series for improved contrast and inner working angle behind the obscured aperture of the telescope. We present the motivation, design, performance, and data reduction pipeline of the instrument. In the following chapter, we present some early science results, including the first image of a companion to the star delta Andromeda, which had been previously hypothesized but never seen.

A further chapter presents a wavefront control code developed for the instrument, using the technique of "speckle nulling," which can remove optical aberrations from the system using the deformable mirror of the adaptive optics system. This code allows for improved contrast and inner working angles, and was written in a modular style so as to be portable to other high contrast imaging platforms. We present its performance on optical, near-infrared, and thermal infrared instruments on the Palomar and Keck telescopes, showing how it can improve contrasts by a factor of a few in less than ten iterations.

One of the large challenges in direct imaging is sensing and correcting the electric field in the focal plane to remove scattered light that can be much brighter than any planets. In the last chapter, we present a new method of focal-plane wavefront sensing, combining a coronagraph with a simple phase-shifting interferometer. We present its design and implementation on the Stellar Double Coronagraph, demonstrating its ability to create regions of high contrast by measuring and correcting for optical aberrations in the focal plane. Finally, we derive how it is possible to use the same hardware to distinguish companions from speckle errors using the principles of optical coherence. We present results observing the brown dwarf HD 49197b, demonstrating the ability to detect it despite it being buried in the speckle noise floor. We believe this is the first detection of a substellar companion using the coherence properties of light.