993 resultados para plant regulators
Resumo:
The plant pathogenic bacterium Erwinia chrysanthemi secretes pectate lyase proteins that are important virulence factors attacking the cell walls of plant hosts. Bacterial production of these enzymes is induced by the substrate polypectate-Na (NaPP) and further stimulated by the presence of plant extracts. The bacterial regulator responsible for induction by plant extracts was identified and purified by using a DNA-binding assay with the promoter region of pelE that encodes a major pectate lyase. A novel bacterial protein, called Pir, was isolated that produced a specific gel shift of the pelE promoter DNA, and the corresponding pir gene was cloned and sequenced. The Pir protein contains 272 amino acids with a molecular mass of 30 kDa and appears to function as a dimer. A homology search indicates that Pir belongs to the IclR family of transcriptional regulators. Pir bound to a 35-bp DNA sequence in the promoter region of pelE. This site overlaps that of a previously described negative regulator, KdgR. Gel shift experiments showed that the binding of either Pir or KdgR interfered with binding of the other protein.
Resumo:
The plant hormone ethylene is involved in many developmental processes, including fruit ripening, abscission, senescence, and leaf epinasty. Tomato contains a family of ethylene receptors, designated LeETR1, LeETR2, NR, LeETR4, and LeETR5, with homology to the Arabidopsis ETR1 ethylene receptor. Transgenic plants with reduced LeETR4 gene expression display multiple symptoms of extreme ethylene sensitivity, including severe epinasty, enhanced flower senescence, and accelerated fruit ripening. Therefore, LeETR4 is a negative regulator of ethylene responses. Reduced expression of this single gene affects multiple developmental processes in tomato, whereas in Arabidopsis multiple ethylene receptors must be inactivated to increase ethylene response. Transgenic lines with reduced NR mRNA levels exhibit normal ethylene sensitivity but elevated levels of LeETR4 mRNA, indicating a functional compensation of LeETR4 for reduced NR expression. Overexpression of NR in lines with lowered LeETR4 gene expression eliminates the ethylene-sensitive phenotype, indicating that despite marked differences in structure these ethylene receptors are functionally redundant.
Resumo:
Plant survival under environmental stress requires the integration of multiple signaling pathways into a coordinated response, but the molecular mechanisms underlying this integration are poorly understood. Stress-derived energy deprivation activates the Snf1-related protein kinases1 (SnRK1s), triggering a vast transcriptional and metabolic reprogramming that restores homeostasis and promotes tolerance to adverse conditions. Here, we show that two clade A type 2C protein phosphatases (PP2Cs), established repressors of the abscisic acid (ABA) hormonal pathway, interact with the SnRK1 catalytic subunit causing its dephosphorylation and inactivation. Accordingly, SnRK1 repression is abrogated in double and quadruple pp2c knockout mutants, provoking, similarly to SnRK1 overexpression, sugar hypersensitivity during early seedling development. Reporter gene assays and SnRK1 target gene expression analyses further demonstrate that PP2C inhibition by ABA results in SnRK1 activation, promoting SnRK1 signaling during stress and once the energy deficit subsides. Consistent with this, SnRK1 and ABA induce largely overlapping transcriptional responses. Hence, the PP2C hub allows the coordinated activation of ABA and energy signaling, strengthening the stress response through the cooperation of two key and complementary pathways.
Resumo:
Plants are necessarily complex systems that require monitoring of multiple environmental signals and, in response to those signals, coordination of differentiation and development of an extensive array of cell types at multiple locations. This coordination must rely on integration of long-distance signals that provide a means of communication among different plant parts. We propose that the relatively well-characterized classical phytohormones must act with several other long-distance signals to achieve this level of organization with dynamic yet measured responses. This is supported by observations that classical phytohormones: (i) operate in complex yet experimentally unresolved networks involving cross-talk and feedback, (ii) are generally multifunctional and nonspecific and hence must rely on other long-distance cues or pre-set conditions to achieve specificity and (iii) are likely to mask roles of other long-distance signals in several experimental contexts. We present evidence for involvement of novel long-distance signals in three developmental processes-branching, flowering and nodulation, and discuss the possible identities of novel signalling molecules.
Resumo:
Background - Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistent with their expression in most tissues, AQPs are associated with diverse physiological and pathophysiological processes. Scope of review - AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volume regulation (CVR) is particularly notable. This review examines the regulatory role of AQPs in transcellular water flow, especially in CVR. We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. Major conclusions - AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapid movement of water across diverse cell membranes and playing regulatory roles in CVR. Gating mechanisms have been proposed for human AQPs, but have only been reported for plant and microbial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. General significance - Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins.
Resumo:
Plant oxylipins are a large family of metabolites derived from polyunsaturated fatty acids. The characterization of mutants or transgenic plants affected in the biosynthesis or perception of oxylipins has recently emphasized the role of the so-called oxylipin pathway in plant defense against pests and pathogens. In this context, presumed functions of oxylipins include direct antimicrobial effect, stimulation of plant defense gene expression, and regulation of plant cell death. However, the precise contribution of individual oxylipins to plant defense remains essentially unknown. To get a better insight into the biological activities of oxylipins, in vitro growth inhibition assays were used to investigate the direct antimicrobial activities of 43 natural oxylipins against a set of 13 plant pathogenic microorganisms including bacteria, oomycetes, and fungi. This study showed unequivocally that most oxylipins are able to impair growth of some plant microbial pathogens, with only two out of 43 oxylipins being completely inactive against all the tested organisms, and 26 oxylipins showing inhibitory activity toward at least three different microbes. Six oxylipins strongly inhibited mycelial growth and spore germination of eukaryotic microbes, including compounds that had not previously been ascribed an antimicrobial activity such as 13-keto-9(Z),11(Z),15(Z)- octadecatrienoic acid and 12-oxo-10,15(Z)-phytodienoic acid. Interestingly this first large-scale comparative assessment of the antimicrobial effects of oxylipins reveals that regulators of plant defense responses are also the most active oxylipins against eukaryotic microorganisms, suggesting that such oxylipins might contribute to plant defense through their effects both on the plant and on pathogens, possibly through related mechanisms. © 2005 American Society of Plant Biologists.
Resumo:
Dear Editor, Phytohormones are essential regulators of plant development, but their role in the signaling processes between plants and fungi during arbuscular mycorrhizal (AM) establishment is far from being understood (Ludwig-Müller, 2010). AM colonization leads to extensive effects on host metabolism, as revealed by transcriptome studies of AM plants (Hogekamp et al., 2011). Some genes have been specified as an AM core set, since they are mycorrhizal-responsive, irrespective of the identity of the plant, of the fungus, and of the investigated organ. These data support the idea that, on colonization, plants activate a wide reprogramming of their major regulatory networks and argue that mobile factors of fungal or plant origin are involved in such generalized metabolic changes. In this context, hormones may be good candidates (Bonfante and Genre, 2010). However, the emerging picture of the interaction between phytohormones and AMs is very patchy, and information on gibberellin (GA) involvement is still more limited (García-Garrido et al., 2010). The role of GA during nodulation is instead known to control the nodulation signaling pathway (Ferguson et al., 2011).
Resumo:
Soil salinity affects rhizobia both as free-living bacteria and in symbiosis with the host. The aim of this study was to examine the transcriptional response of the Lotus microsymbiont Mesorhizobium loti MAFF303099 to salt shock. Changes in the transcriptome of bacterial cells subjected to a salt shock of 10% NaCl for 30 min were analyzed. From a total of 7231 protein-coding genes, 385 were found to be differentially expressed upon salt shock, among which 272 were overexpressed. Although a large number of overexpressed genes encode hypothetical proteins, the two most frequently represented COG categories are "defense mechanisms" and "nucleotide transport and metabolism". A significant number of transcriptional regulators and ABC transporters genes were upregulated. Chemotaxis and motility genes were not differentially expressed. Moreover, most genes previously reported to be involved in salt tolerance were not differentially expressed. The transcriptional response to salt shock of a rhizobium with low ability to grow under salinity conditions, but enduring a salinity shock, may enlighten us concerning salinity stress response mechanisms.
Resumo:
Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species.
Resumo:
Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation.
Resumo:
Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV-vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20 - a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4μg/ml, which warrants further detailed investigations concerning toxicity.
Resumo:
Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones.
Resumo:
Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been widely used for the identification and classification of microorganisms based on their proteomic fingerprints. However, the use of MALDI-TOF MS in plant research has been very limited. In the present study, a first protocol is proposed for metabolic fingerprinting by MALDI-TOF MS using three different MALDI matrices with subsequent multivariate data analysis by in-house algorithms implemented in the R environment for the taxonomic classification of plants from different genera, families and orders. By merging the data acquired with different matrices, different ionization modes and using careful algorithms and parameter selection, we demonstrate that a close taxonomic classification can be achieved based on plant metabolic fingerprints, with 92% similarity to the taxonomic classifications found in literature. The present work therefore highlights the great potential of applying MALDI-TOF MS for the taxonomic classification of plants and, furthermore, provides a preliminary foundation for future research.
Resumo:
Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments - sedimentary, crystalline, and inselberg -representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically informed conservation strategies in the Caatinga and other SDTF regions that have not previously been prioritized for conservation in order to take into account this heterogeneity.