980 resultados para pipeline life prediction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentiment analysis has long focused on binary classification of text as either positive or negative. There has been few work on mapping sentiments or emotions into multiple dimensions. This paper studies a Bayesian modeling approach to multi-class sentiment classification and multidimensional sentiment distributions prediction. It proposes effective mechanisms to incorporate supervised information such as labeled feature constraints and document-level sentiment distributions derived from the training data into model learning. We have evaluated our approach on the datasets collected from the confession section of the Experience Project website where people share their life experiences and personal stories. Our results show that using the latent representation of the training documents derived from our approach as features to build a maximum entropy classifier outperforms other approaches on multi-class sentiment classification. In the more difficult task of multi-dimensional sentiment distributions prediction, our approach gives superior performance compared to a few competitive baselines. © 2012 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute life-threatening events are mostly predictable in adults and children. Despite real-time monitoring these events still occur at a rate of 4%. This paper describes an automated prediction system based on the feature space embedding and time series forecasting methods of the SpO2 signal; a pulsatile signal synchronised with heart beat. We develop an age-independent index of abnormality that distinguishes patient-specific normal to abnormal physiology transitions. Two different methods were used to distinguish between normal and abnormal physiological trends based on SpO2 behaviour. The abnormality index derived by each method is compared against the current gold standard of clinical prediction of critical deterioration. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Projects exposed to an uncertain environment must be adapted to deal with the effective integration of various planning elements and the optimization of project parameters. Time, cost, and quality are the prime objectives of a project that need to be optimized to fulfill the owner's goal. In an uncertain environment, there exist many other conflicting objectives that may also need to be optimized. These objectives are characterized by varying degrees of conflict. Moreover, an uncertain environment also causes several changes in the project plan throughout its life, demanding that the project plan be totally flexible. Goal programming (GP), a multiple criteria decision making technique, offers a good solution for this project planning problem. There the planning problem is considered from the owner's perspective, which leads to classifying the project up to the activity level. GP is applied separately at each level, and the formulated models are integrated through information flow. The flexibility and adaptability of the models lies in the ease of updating the model parameters at the required level through changing priorities and/or constraints and transmitting the information to other levels. The hierarchical model automatically provides integration among various element of planning. The proposed methodology is applied in this paper to plan a petroleum pipeline construction project, and its effectiveness is demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62E16, 65C05, 65C20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bio-systems are inherently complex information processing systems. Furthermore, physiological complexities of biological systems limit the formation of a hypothesis in terms of behavior and the ability to test hypothesis. More importantly the identification and classification of mutation in patients are centric topics in today's cancer research. Next generation sequencing (NGS) technologies can provide genome-wide coverage at a single nucleotide resolution and at reasonable speed and cost. The unprecedented molecular characterization provided by NGS offers the potential for an individualized approach to treatment. These advances in cancer genomics have enabled scientists to interrogate cancer-specific genomic variants and compare them with the normal variants in the same patient. Analysis of this data provides a catalog of somatic variants, present in tumor genome but not in the normal tissue DNA. In this dissertation, we present a new computational framework to the problem of predicting the number of mutations on a chromosome for a certain patient, which is a fundamental problem in clinical and research fields. We begin this dissertation with the development of a framework system that is capable of utilizing published data from a longitudinal study of patients with acute myeloid leukemia (AML), who's DNA from both normal as well as malignant tissues was subjected to NGS analysis at various points in time. By processing the sequencing data at the time of cancer diagnosis using the components of our framework, we tested it by predicting the genomic regions to be mutated at the time of relapse and, later, by comparing our results with the actual regions that showed mutations (discovered at relapse time). We demonstrate that this coupling of the algorithm pipeline can drastically improve the predictive abilities of searching a reliable molecular signature. Arguably, the most important result of our research is its superior performance to other methods like Radial Basis Function Network, Sequential Minimal Optimization, and Gaussian Process. In the final part of this dissertation, we present a detailed significance, stability and statistical analysis of our model. A performance comparison of the results are presented. This work clearly lays a good foundation for future research for other types of cancer.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Attaining an accurate diagnosis in the acute phase for severely brain-damaged patients presenting Disorders of Consciousness (DOC) is crucial for prognostic validity; such a diagnosis determines further medical management, in terms of therapeutic choices and end-of-life decisions. However, DOC evaluation based on validated scales, such as the Revised Coma Recovery Scale (CRS-R), can lead to an underestimation of consciousness and to frequent misdiagnoses particularly in cases of cognitive motor dissociation due to other aetiologies. The purpose of this study is to determine the clinical signs that lead to a more accurate consciousness assessment allowing more reliable outcome prediction. METHODS: From the Unit of Acute Neurorehabilitation (University Hospital, Lausanne, Switzerland) between 2011 and 2014, we enrolled 33 DOC patients with a DOC diagnosis according to the CRS-R that had been established within 28 days of brain damage. The first CRS-R assessment established the initial diagnosis of Unresponsive Wakefulness Syndrome (UWS) in 20 patients and a Minimally Consciousness State (MCS) in the remaining13 patients. We clinically evaluated the patients over time using the CRS-R scale and concurrently from the beginning with complementary clinical items of a new observational Motor Behaviour Tool (MBT). Primary endpoint was outcome at unit discharge distinguishing two main classes of patients (DOC patients having emerged from DOC and those remaining in DOC) and 6 subclasses detailing the outcome of UWS and MCS patients, respectively. Based on CRS-R and MBT scores assessed separately and jointly, statistical testing was performed in the acute phase using a non-parametric Mann-Whitney U test; longitudinal CRS-R data were modelled with a Generalized Linear Model. RESULTS: Fifty-five per cent of the UWS patients and 77% of the MCS patients had emerged from DOC. First, statistical prediction of the first CRS-R scores did not permit outcome differentiation between classes; longitudinal regression modelling of the CRS-R data identified distinct outcome evolution, but not earlier than 19 days. Second, the MBT yielded a significant outcome predictability in the acute phase (p<0.02, sensitivity>0.81). Third, a statistical comparison of the CRS-R subscales weighted by MBT became significantly predictive for DOC outcome (p<0.02). DISCUSSION: The association of MBT and CRS-R scoring improves significantly the evaluation of consciousness and the predictability of outcome in the acute phase. Subtle motor behaviour assessment provides accurate insight into the amount and the content of consciousness even in the case of cognitive motor dissociation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

History has shown that projects move in and out of poor status through the life of the project. Predicting the success or failure of a project to complete on time because of its recent history on the contract status report could provide our project managers another tool for monitoring contract progress. In many instances, poor contract progress results in the loss of contract time and late completion of projects. This research evaluates the combinations of work type, point in time physical work begins, recent poor status, and contract bid amount as indicators of late project completion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the PhD program in chemistry at the University of Bologna, the environmental sustainability of some industrial processes was studied through the application of the LCA methodology. The efforts were focused on the study of processes under development, in order to assess their environmental impacts to guide their transfer on an industrial scale. Processes that could meet the principles of Green Chemistry have been selected and their environmental benefits have been evaluated through a holistic approach. The use of renewable sources was assessed through the study of terephthalic acid production from biomass (which showed that only the use of waste can provide an environmental benefit) and a new process for biogas upgrading (whose potential is to act as a carbon capture technology). Furthermore, the basis for the development of a new methodology for the prediction of the environmental impact of ionic liquids has been laid. It has already shown good qualities in identifying impact trends, but further research on it is needed to obtain a more reliable and usable model. In the context of sustainable development that will not only be sector-specific, the environmental performance of some processes linked to the primary production sector has also been evaluated. The impacts of some organic farming practices in the wine production were analysed, the use of the Cereal Unit parameter was proposed as a functional unit for the comparison of different crop rotations, and the carbon footprint of school canteen meals was calculated. The results of the analyses confirm that sustainability in the industrial production sector should be assessed from a life cycle perspective, in order to consider all the flows involved during the different phases. In particular, it is necessary that environmental assessments adopt a cradle-to-gate approach, to avoid shifting the environmental burden from one phase to another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern scientific discoveries are driven by an unsatisfiable demand for computational resources. High-Performance Computing (HPC) systems are an aggregation of computing power to deliver considerably higher performance than one typical desktop computer can provide, to solve large problems in science, engineering, or business. An HPC room in the datacenter is a complex controlled environment that hosts thousands of computing nodes that consume electrical power in the range of megawatts, which gets completely transformed into heat. Although a datacenter contains sophisticated cooling systems, our studies indicate quantitative evidence of thermal bottlenecks in real-life production workload, showing the presence of significant spatial and temporal thermal and power heterogeneity. Therefore minor thermal issues/anomalies can potentially start a chain of events that leads to an unbalance between the amount of heat generated by the computing nodes and the heat removed by the cooling system originating thermal hazards. Although thermal anomalies are rare events, anomaly detection/prediction in time is vital to avoid IT and facility equipment damage and outage of the datacenter, with severe societal and business losses. For this reason, automated approaches to detect thermal anomalies in datacenters have considerable potential. This thesis analyzed and characterized the power and thermal characteristics of a Tier0 datacenter (CINECA) during production and under abnormal thermal conditions. Then, a Deep Learning (DL)-powered thermal hazard prediction framework is proposed. The proposed models are validated against real thermal hazard events reported for the studied HPC cluster while in production. This thesis is the first empirical study of thermal anomaly detection and prediction techniques of a real large-scale HPC system to the best of my knowledge. For this thesis, I used a large-scale dataset, monitoring data of tens of thousands of sensors for around 24 months with a data collection rate of around 20 seconds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Machine Learning makes computers capable of performing tasks typically requiring human intelligence. A domain where it is having a considerable impact is the life sciences, allowing to devise new biological analysis protocols, develop patients’ treatments efficiently and faster, and reduce healthcare costs. This Thesis work presents new Machine Learning methods and pipelines for the life sciences focusing on the unsupervised field. At a methodological level, two methods are presented. The first is an “Ab Initio Local Principal Path” and it is a revised and improved version of a pre-existing algorithm in the manifold learning realm. The second contribution is an improvement over the Import Vector Domain Description (one-class learning) through the Kullback-Leibler divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable solution, an improved probabilistic model, and state-of-the-art performances. Both methods are tested through several experiments, with a central focus on their relevance in life sciences. Results show that they improve the performances achieved by their previous versions. At the applicative level, two pipelines are presented. The first one is for the analysis of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at identifying genes that may be involved in biological processes (e.g., the transition of tissues from normal to cancer). In this project, an R package is released on CRAN to make the pipeline accessible to the bioinformatic Community through high-level APIs. The second pipeline is in the drug discovery domain and is useful for identifying druggable pockets, namely regions of a protein with a high probability of accepting a small molecule (a drug). Both these pipelines achieve remarkable results. Lastly, a detour application is developed to identify the strengths/limitations of the “Principal Path” algorithm by analyzing Convolutional Neural Networks induced vector spaces. This application is conducted in the music and visual arts domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The segment of the world population showing permanent or temporary lactose intolerance is quite significant. Because milk is a widely consumed food with an high nutritional value, technological alternatives have been sought to overcome this dilemma. Microfiltration combined with pasteurization can not only extend the shelf life of milk but can also maintain the sensory, functional, and nutritional properties of the product. This studied developed a pasteurized, microfiltered, lactose hydrolyzed (delactosed) skim milk (PMLHSM). Hydrolysis was performed using β-galactosidase at a concentration of 0.4mL/L and incubation for approximately 21h at 10±1°C. During these procedures, the degree of hydrolysis obtained (>90%) was accompanied by evaluation of freezing point depression, and the remaining quantity of lactose was confirmed by HPLC. Milk was processed using a microfiltration pilot unit equipped with uniform transmembrane pressure (UTP) ceramic membranes with a mean pore size of 1.4 μm and UTP of 60 kPa. The product was submitted to physicochemical, microbiological, and sensory evaluations, and its shelf life was estimated. Microfiltration reduced the aerobic mesophilic count by more than 4 log cycles. We were able to produce high-quality PMLHSM with a shelf life of 21 to 27d when stored at 5±1°C in terms of sensory analysis and proteolysis index and a shelf life of 50d in regard to total aerobic mesophile count and titratable acidity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New DNA-based predictive tests for physical characteristics and inference of ancestry are highly informative tools that are being increasingly used in forensic genetic analysis. Two eye colour prediction models: a Bayesian classifier - Snipper and a multinomial logistic regression (MLR) system for the Irisplex assay, have been described for the analysis of unadmixed European populations. Since multiple SNPs in combination contribute in varying degrees to eye colour predictability in Europeans, it is likely that these predictive tests will perform in different ways amongst admixed populations that have European co-ancestry, compared to unadmixed Europeans. In this study we examined 99 individuals from two admixed South American populations comparing eye colour versus ancestry in order to reveal a direct correlation of light eye colour phenotypes with European co-ancestry in admixed individuals. Additionally, eye colour prediction following six prediction models, using varying numbers of SNPs and based on Snipper and MLR, were applied to the study populations. Furthermore, patterns of eye colour prediction have been inferred for a set of publicly available admixed and globally distributed populations from the HGDP-CEPH panel and 1000 Genomes databases with a special emphasis on admixed American populations similar to those of the study samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What is the contribution of the provision, at no cost for users, of long acting reversible contraceptive methods (LARC; copper intrauterine device [IUD], the levonorgestrel-releasing intrauterine system [LNG-IUS], contraceptive implants and depot-medroxyprogesterone [DMPA] injection) towards the disability-adjusted life years (DALY) averted through a Brazilian university-based clinic established over 30 years ago. Over the last 10 years of evaluation, provision of LARC methods and DMPA by the clinic are estimated to have contributed to DALY averted by between 37 and 60 maternal deaths, 315-424 child mortalities, 634-853 combined maternal morbidity and mortality and child mortality, and 1056-1412 unsafe abortions averted. LARC methods are associated with a high contraceptive effectiveness when compared with contraceptive methods which need frequent attention; perhaps because LARC methods are independent of individual or couple compliance. However, in general previous studies have evaluated contraceptive methods during clinical studies over a short period of time, or not more than 10 years. Furthermore, information regarding the estimation of the DALY averted is scarce. We reviewed 50 004 medical charts from women who consulted for the first time looking for a contraceptive method over the period from 2 January 1980 through 31 December 2012. Women who consulted at the Department of Obstetrics and Gynaecology, University of Campinas, Brazil were new users and users switching contraceptive, including the copper IUD (n = 13 826), the LNG-IUS (n = 1525), implants (n = 277) and DMPA (n = 9387). Estimation of the DALY averted included maternal morbidity and mortality, child mortality and unsafe abortions averted. We obtained 29 416 contraceptive segments of use including 25 009 contraceptive segments of use from 20 821 new users or switchers to any LARC method or DMPA with at least 1 year of follow-up. The mean (± SD) age of the women at first consultation ranged from 25.3 ± 5.7 (range 12-47) years in the 1980s, to 31.9 ± 7.4 (range 16-50) years in 2010-2011. The most common contraceptive chosen at the first consultation was copper IUD (48.3, 74.5 and 64.7% in the 1980s, 1990s and 2000s, respectively). For an evaluation over 20 years, the cumulative pregnancy rates (SEM) were 0.4 (0.2), 2.8 (2.1), 4.0 (0.4) and 1.3 (0.4) for the LNG-IUS, the implants, copper IUD and DMPA, respectively and cumulative continuation rates (SEM) were 15.1 (3.7), 3.9 (1.4), 14.1 (0.6) and 7.3 (1.7) for the LNG-IUS, implants, copper IUD and DMPA, respectively (P < 0.001). Over the last 10 years of evaluation, the estimation of the contribution of the clinic through the provision of LARC methods and DMPA to DALY averted was 37-60 maternal deaths; between 315 and 424 child mortalities; combined maternal morbidity and mortality and child mortality of between 634 and 853, and 1056-1412 unsafe abortions averted. The main limitations are the number of women who never returned to the clinic (overall 14% among the four methods under evaluation); consequently the pregnancy rate could be different. Other limitations include the analysis of two kinds of copper IUD and two kinds of contraceptive implants as the same IUD or implant, and the low number of users of implants. In addition, the DALY calculation relies on a number of estimates, which may vary in different parts of the world. LARC methods and DMPA are highly effective and women who were well-counselled used these methods for a long time. The benefit of averting maternal morbidity and mortality, child mortality, and unsafe abortions is an example to health policy makers to implement more family planning programmes and to offer contraceptive methods, mainly LARC and DMPA, at no cost or at affordable cost for the underprivileged population. This study received partial financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant # 2012/12810-4 and from the National Research Council (CNPq), grant #573747/2008-3. B.F.B., M.P.G., and V.M.C. were fellows from the scientific initiation programme from FAPESP. Since the year 2001, all the TCu380A IUD were donated by Injeflex, São Paulo, Brazil, and from the year 2006 all the LNG-IUS were donated by the International Contraceptive Access Foundation (ICA), Turku, Finland. Both donations are as unrestricted grants. The authors declare that there are no conflicts of interest associated with this study.