965 resultados para pipeline life prediction
Resumo:
BACKGROUND: A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective. METHODS AND RESULTS: Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy. CONCLUSIONS: Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities.
Resumo:
This paper describes how modeling technology has been used in providing fatigue life time data of two flip-chip models. Full-scale three-dimensional modeling of flip-chips under cyclic thermal loading has been combined with solder joint stand-off height prediction to analyze the stress and strain conditions in the two models. The Coffin-Manson empirical relationship is employed to predict the fatigue life times of the solder interconnects. In order to help designers in selecting the underfill material and the printed circuit board, the Young's modulus and the coefficient of thermal expansion of the underfill, as well as the thickness of the printed circuit boards are treated as variable parameters. Fatigue life times are therefore calculated over a range of these material and geometry parameters. In this paper we will also describe how the use of micro-via technology may affect fatigue life
Resumo:
A new approach to the prediction of bend lifetime in pneumatic conveyors, subject to erosive wear is described. Mathematical modelling is exploited. Commercial Computational Fluid Dynamics (CFD) software is used for the prediction of air flow and particle tracks, and custom code for the modelling of bend erosion and lifetime prediction. The custom code uses a toroidal geometry, and employs a range of empirical data rather than trying to fit classical erosion models to a particular circumstance. The data used was obtained relatively quickly and easily from a gas-blast erosion tester. A full-scale pneumatic conveying rig was used to validate a sample of the bend lifetime predictions, and the results suggest accuracy of within ±65%, using calibration methods. Finally, the work is distilled into user-friendly interactive software that will make erosion lifetime predictions for a wide range of bends under varying conveying conditions. This could be a valuable tool for the pneumatic conveyor design or maintenance engineer.
Resumo:
The overall objective of this work is to develop a computational model of particle degradation during dilute-phasepneumatic conveying. A key feature of such a model is the prediction of particle breakage due to particle–wall collisions in pipeline bends. This paper presents a method for calculating particle impact degradation propensity under a range of particle velocities and particle sizes. It is based on interpolation on impact data obtained in a new laboratory-scale degradation tester. The method is tested and validated against experimental results for degradation at 90± impact angle of a full-size distribution sample of granulated sugar. In a subsequent work, the calculation of degradation propensity is coupled with a ow model of the solids and gas phases in the pipeline.
Resumo:
A complete model of particle impact degradation during dilute-phase pneumatic conveying is developed, which combines a degradation model, based on the experimental determination of breakage matrices, and a physical model of solids and gas flow in the pipeline. The solids flow in a straight pipe element is represented by a model consisting of two zones: a strand-type flow zone immediately downstream of a bend, followed by a fully suspended flow region after dispersion of the strand. The breakage matrices constructed from data on 90° angle single-impact tests are shown to give a good representation of the degradation occurring in a pipe bend of 90° angle. Numerical results are presented for degradation of granulated sugar in a large scale pneumatic conveyor.
Resumo:
Based on extensive research on reinforcing steel corrosion in concrete in the past decades, it is now possible to estimate the effect of the progression of reinforcement corrosion in concrete infrastructure on its structural performance. There are still areas of considerable uncertainty in the models and in the data available, however This paper uses a recently developed model for reinforcement corrosion in concrete to improve the estimation process and to indicate the practical implications. In particular stochastic models are used to estimate the time likely to elapse for each phase of the whole corrosion process: initiation, corrosion-induced concrete cracking, and structural strength reduction. It was found that, for practical flexural structures subject to chloride attacks, corrosion initiation may start quite early in their service life. It was also found that, once the structure is considered to be unserviceable due to corrosion-induced cracking, there is considerable remaining service life before the structure can be considered to have become unsafe. The procedure proposed in the paper has the potential to serve as a rational tool for practitioners, operators, and asset managers to make decisions about the optimal timing of repairs, strengthening, and/or rehabilitation of corrosion-affected concrete infrastructure. Timely intervention has the potential to prolong the service life of infrastructure.
Resumo:
The main purpose of this paper is to provide the core description of the modelling exercise within the Shelf Edge Advection Mortality And Recruitment (SEAMAR) programme. An individual-based model (IBM) was developed for the prediction of year-to-year survival of the early life-history stages of mackerel (Scomber scombrus) in the eastern North Atlantic. The IBM is one of two components of the model system. The first component is a circulation model to provide physical input data for the IBM. The circulation model is a geographical variant of the HAMburg Shelf Ocean Model (HAMSOM). The second component is the IBM, which is an i-space configuration model in which large numbers of individuals are followed as discrete entities to simulate the transport, growth and mortality of mackerel eggs, larvae and post-larvae. Larval and post-larval growth is modelled as a function of length, temperature and food distribution; mortality is modelled as a function of length and absolute growth rate. Each particle is considered as a super-individual representing 10 super(6) eggs at the outset of the simulation, and then declining according to the mortality function. Simulations were carried out for the years 1998-2000. Results showed concentrations of particles at Porcupine Bank and the adjacent Irish shelf, along the Celtic Sea shelf-edge, and in the southern Bay of Biscay. High survival was observed only at Porcupine and the adjacent shelf areas, and, more patchily, around the coastal margin of Biscay. The low survival along the shelf-edge of the Celtic Sea was due to the consistently low estimates of food availability in that area.
Resumo:
One way to restore physiological blood flow to occluded arteries involves the deformation of plaque using an intravascular balloon and preventing elastic recoil using a stent. Angioplasty and stent implantation cause unphysiological loading of the arterial tissue, which may lead to tissue in-growth and reblockage; termed “restenosis.” In this paper, a computational methodology for predicting the time-course of restenosis is presented. Stress-induced damage, computed using a remaining life approach, stimulates inflammation (production of matrix degrading factors and growth stimuli). This, in turn, induces a change in smooth muscle cell phenotype from contractile (as exists in the quiescent tissue) to synthetic (as exists in the growing tissue). In this paper, smooth muscle cell activity (migration, proliferation, and differentiation) is simulated in a lattice using a stochastic approach to model individual cell activity. The inflammation equations are examined under simplified loading cases. The mechanobiological parameters of the model were estimated by calibrating the model response to the results of a balloon angioplasty study in humans. The simulation method was then used to simulate restenosis in a two dimensional model of a stented artery. Cell activity predictions were similar to those observed during neointimal hyperplasia, culminating in the growth of restenosis. Similar to experiment, the amount of neointima produced increased with the degree of expansion of the stent, and this relationship was found to be highly dependant on the prescribed inflammatory response. It was found that the duration of inflammation affected the amount of restenosis produced, and that this effect was most pronounced with large stent expansions. In conclusion, the paper shows that the arterial tissue response to mechanical stimulation can be predicted using a stochastic cell modeling approach, and that the simulation captures features of restenosis development observed with real stents. The modeling approach is proposed for application in three dimensional models of cardiovascular stenting procedures.
Resumo:
The need to account for the effect of design decisions on manufacture and the impact of manufacturing cost on the life cycle cost of any product are well established. In this context, digital design and manufacturing solutions have to be further developed to facilitate and automate the integration of cost as one of the major driver in the product life cycle management. This article is to present an integration methodology for implementing cost estimation capability within a digital manufacturing environment. A digital manufacturing structure of knowledge databases are set out and the ontology of assembly and part costing that is consistent with the structure is provided. Although the methodology is currently used for recurring cost prediction, it can be well applied to other functional developments, such as process planning. A prototype tool is developed to integrate both assembly time cost and parts manufacturing costs within the same digital environment. An industrial example is used to validate this approach.
Resumo:
Despite the importance of larval abundance in determining the recruitment of benthic marine invertebrates and as a major factor in marine benthic community structure, relating planktonic larval abundance with post-settlement post-larvae and juveniles in the benthos is difficult. It is hampered by several methodological difficulties, including sampling frequency, ability to follow larval and post-larval or juvenile cohorts, and ability to calculate growth and mortality rates. In our work, an intensive sampling strategy was used. Larvae in the plankton were collected at weekly intervals, while post-larvae that settled into collectors were analysed fortnightly. Planktonic larval and benthic post-larval/juvenile cohorts were determined, and growth and mortality rates calculated. Integration of all equations allowed the development of a theoretical formulation that, based on the abundance and planktonic larval duration, permits an estimation of the future abundance of post-larvae/juveniles during the first year of benthic life. The model can be applied to a sample in which it was necessary only to measure larval length.
Resumo:
Thesis (Master's)--University of Washington, 2016-03
Resumo:
Accelerated life testing (ALT) is widely used to obtain reliability information about a product within a limited time frame. The Cox s proportional hazards (PH) model is often utilized for reliability prediction. My master thesis research focuses on designing accelerated life testing experiments for reliability estimation. We consider multiple step-stress ALT plans with censoring. The optimal stress levels and times of changing the stress levels are investigated. We discuss the optimal designs under three optimality criteria. They are D-, A- and Q-optimal designs. We note that the classical designs are optimal only if the model assumed is correct. Due to the nature of prediction made from ALT experimental data, attained under the stress levels higher than the normal condition, extrapolation is encountered. In such case, the assumed model cannot be tested. Therefore, for possible imprecision in the assumed PH model, the method of construction for robust designs is also explored.
Resumo:
Learning Disability (LD) is a general term that describes specific kinds of learning problems. It is a neurological condition that affects a child's brain and impairs his ability to carry out one or many specific tasks. The learning disabled children are neither slow nor mentally retarded. This disorder can make it problematic for a child to learn as quickly or in the same way as some child who isn't affected by a learning disability. An affected child can have normal or above average intelligence. They may have difficulty paying attention, with reading or letter recognition, or with mathematics. It does not mean that children who have learning disabilities are less intelligent. In fact, many children who have learning disabilities are more intelligent than an average child. Learning disabilities vary from child to child. One child with LD may not have the same kind of learning problems as another child with LD. There is no cure for learning disabilities and they are life-long. However, children with LD can be high achievers and can be taught ways to get around the learning disability. In this research work, data mining using machine learning techniques are used to analyze the symptoms of LD, establish interrelationships between them and evaluate the relative importance of these symptoms. To increase the diagnostic accuracy of learning disability prediction, a knowledge based tool based on statistical machine learning or data mining techniques, with high accuracy,according to the knowledge obtained from the clinical information, is proposed. The basic idea of the developed knowledge based tool is to increase the accuracy of the learning disability assessment and reduce the time used for the same. Different statistical machine learning techniques in data mining are used in the study. Identifying the important parameters of LD prediction using the data mining techniques, identifying the hidden relationship between the symptoms of LD and estimating the relative significance of each symptoms of LD are also the parts of the objectives of this research work. The developed tool has many advantages compared to the traditional methods of using check lists in determination of learning disabilities. For improving the performance of various classifiers, we developed some preprocessing methods for the LD prediction system. A new system based on fuzzy and rough set models are also developed for LD prediction. Here also the importance of pre-processing is studied. A Graphical User Interface (GUI) is designed for developing an integrated knowledge based tool for prediction of LD as well as its degree. The designed tool stores the details of the children in the student database and retrieves their LD report as and when required. The present study undoubtedly proves the effectiveness of the tool developed based on various machine learning techniques. It also identifies the important parameters of LD and accurately predicts the learning disability in school age children. This thesis makes several major contributions in technical, general and social areas. The results are found very beneficial to the parents, teachers and the institutions. They are able to diagnose the child’s problem at an early stage and can go for the proper treatments/counseling at the correct time so as to avoid the academic and social losses.
Resumo:
Thunderstorm is one of the most spectacular weather phenomena in the atmosphere. Many parts over the Indian region experience thunderstorms at higher frequency during pre-monsoon months (March- May), when the atmosphere is highly unstable because of high temperatures prevailing at lower levels. Most dominant feature of the weather during the pre-monsoon season over the eastern Indo-Gangetic plain and northeast India is the outburst of severe local convective storms, commonly known as ‘Nor’wester’ or ‘Kalbaishakhi’. The severe thunderstorms associated with thunder, squall line, lightning and hail cause extensive losses in agriculture, damage to structure and also loss of life. The casualty due to lightning associated with thunderstorms in this region is the highest in the world. The highest numbers of aviation hazards are reported during occurrence of these thunderstorms. In India, 72% of tornadoes are associated with this thunderstorm.