977 resultados para physical property
Resumo:
In this paper we develop new techniques for revealing geometrical structures in phase space that are valid for aperiodically time dependent dynamical systems, which we refer to as Lagrangian descriptors. These quantities are based on the integration, for a finite time, along trajectories of an intrinsic bounded, positive geometrical and/or physical property of the trajectory itself. We discuss a general methodology for constructing Lagrangian descriptors, and we discuss a “heuristic argument” that explains why this method is successful for revealing geometrical structures in the phase space of a dynamical system. We support this argument by explicit calculations on a benchmark problem having a hyperbolic fixed point with stable and unstable manifolds that are known analytically. Several other benchmark examples are considered that allow us the assess the performance of Lagrangian descriptors in revealing invariant tori and regions of shear. Throughout the paper “side-by-side” comparisons of the performance of Lagrangian descriptors with both finite time Lyapunov exponents (FTLEs) and finite time averages of certain components of the vector field (“time averages”) are carried out and discussed. In all cases Lagrangian descriptors are shown to be both more accurate and computationally efficient than these methods. We also perform computations for an explicitly three dimensional, aperiodically time-dependent vector field and an aperiodically time dependent vector field defined as a data set. Comparisons with FTLEs and time averages for these examples are also carried out, with similar conclusions as for the benchmark examples.
Resumo:
En este trabajo, se han llevado a cabo distintos experimentos en laboratorio, con el objetivo de estudiar el efecto de la aplicación de residuos orgánicos como fuentes de P en las pérdidas de este elemento, que se producen en suelo, tanto por escorrentía superficial como por lixiviación. El interés por evaluar las pérdidas de P se debe a la necesidad de conocer mejor los factores que influyen en los procesos de pérdidas de este elemento y así, poder reducir los problemas de eutrofización de aguas, tanto superficiales como subterráneas, provocadas por un exceso de este nutriente, junto con otros como el nitrógeno. Los trabajos experimentales que se han llevado a cabo se detallan a continuación: Se ha realizado el estudio de las formas de P contenidas en una serie de 14 residuos orgánicos, de distinto origen y tratamiento (compost, lodos, purines y digestato), comparando la información aportada por tres protocolos de fraccionamientos de P diferentes, seleccionados entre los principales métodos utilizados: protocolo de fraccionamiento de Ruttemberg (1992), protocolo de Normas, medidas y ensayos (Ruban et al., 2001a) y protocolo de Huang et al. (2008). Todos los métodos de fraccionamiento empleados aportaron información útil para conocer las formas de P de los residuos, a pesar de que alguno de ellos fue descrito para sedimentos o suelos. Sin embargo, resulta difícil comparar los resultados entre unos y otros, ya que cada uno emplea extractantes y tiempos de ensayos diferentes. Las cantidades de P total determinadas por cada método mantienen una relación lineal, aunque el método SMT, por ser más directo, obtiene las cantidades más elevadas para todos los residuos. Los métodos secuenciales (métodos de Huang y Ruttemberg), a pesar de ser más largos y tediosos, aportan información más detallada de la disponibilidad de las formas de P, y con ello, permiten obtener una mejor estimación de las pérdidas potenciales de este elemento tras su aplicación en suelo. Se han encontrado relaciones positivas entre las fracciones determinadas por estos dos métodos. Así mismo, se encuentra una correlación entre las formas solubles de P y la concentración de los iones [Ca + Fe + Al] de los residuos, útiles como indicadores de la disponibilidad de este elemento. Sin embargo, el protocolo SMT, no obtiene información de la solubilidad o disponibilidad de las formas de P contenidas, ni las formas determinadas mantienen relaciones directas con las de los otros métodos, con excepción del P total. Para el estudio del comportamiento de los residuos aplicados en suelos, se pusieron a punto sistemas de lluvia simulada, con el objetivo de caracterizar las pérdidas de P en la escorrentía superficial generada. Por otra parte, se emplearon columnas de suelos enmendados con residuos orgánicos, para el estudio de las pérdidas de P por lixiviación. Los ensayos de simulación de lluvia se llevaron a cabo de acuerdo al “National Phosphorus Research proyect“ (2001), que consigue simular eventos sucesivos de lluvia en unas condiciones semejantes a la realidad, empleando cajas llenas de suelo del horizonte superficial, con residuos aplicados tanto superficialmente como mediante mezcla con el propio suelo. Los ensayos se realizaron con seis residuos de diferente naturaleza y sometidos a distintos tratamientos. Se encontraron diferencias significativas en las pérdidas de las formas de P analizadas, tanto disueltas como particuladas, en las aguas de escorrentía generadas. En general, las pérdidas en el primer evento de lluvia tras la aplicación de los residuos fueron mayores a las generadas en el segundo evento, predominando las formas de P particuladas respecto a las disueltas en ambos. Se encontró una relación positiva entre las pérdidas de P en las aguas de escorrentía generadas en cada ensayo, con los contenidos de P soluble en agua y fácilmente disponible de los residuos empleados, determinados por los protocolos de fraccionamientos secuenciales. Además, se emplearon los modelos matemáticos desarrollados por Vadas et al. (2005, 2007), de evaluación de las pérdidas de P por escorrentía para fertilizantes y estiércoles. La predicción de estos modelos no se cumple en el caso de todos los residuos. Las distintas propiedades físicas de los residuos pueden afectar a las diferencias entre las pérdidas experimentales y las esperadas. Los ensayos de simulación del proceso de lixiviación se llevaron a cabo en columnas de percolación, con suelos enmendados con residuos orgánicos, de acuerdo a la norma “CEN/TS 14405–2004: Caracterización de los residuos – Test de comportamiento de lixiviación – Test de flujo ascendente”. Las pérdidas de P por procesos de lixiviación de agua, han sido despreciadas durante mucho tiempo respecto a las pérdidas por escorrentía. Sin embargo, se ha demostrado que deben tenerse en consideración, principalmente en algunos tipos de suelos o zonas cercanas a acuíferos. Se utilizaron tres suelos de distinta procedencia para los ensayos, de manera que se pudo estudiar la influencia del tipo de suelo en las pérdidas de P para cada tipo de residuo (purín, compost, digestato y lodo de EDAR). Los índices de adsorción de P determinados para cada suelo permiten evaluar aquellos que presentarán más riesgo de producir pérdidas de este elemento al aplicarse fuentes externas de P, encontrando una relación positiva entre ambos. Las pérdidas de P en los lixiviados varían en función tanto del residuo como del suelo empleado. Para el compost, el purín y el lodo, se encontró una relación entre las pérdidas generadas en el agua lixiviada de las columnas y las formas de P soluble contenidas en los residuos. Sin embargo, en el caso del digestato, no existía esta correlación. Las pérdidas para este residuo fueron en todos los casos menores a las estimadas, considerando las formas de P contenido. El estudio de la mojabilidad, propiedad física del residuo que evalúa la capacidad de interacción residuo-agua, permitió explicar el comportamiento anómalo de este residuo, con una mayor resistencia a que el agua entrara en su estructura y por tanto, una mayor dificultad de solubilizar el P contenido en el propio residuo, que en el caso de otros residuos. En general, podemos considerar que el estudio de las formas de P más disponibles o solubles en agua, aporta información útil de las pérdidas potenciales de P. Sin embargo, es necesario estudiar las propiedades físicas de los residuos orgánicos aplicados y la capacidad de adsorción de P de los suelos, para estimar las pérdidas de P y con ello, colaborar a controlar los procesos de eutrofización en aguas. ABSTRACT This dissertation explores the effect of organic wastes application as sources of P in losses of this element that occur by both surface runoff and leaching in soil. To do so, diverse laboratory experiments are conducted and presented here. Evaluating P losses is necessary to better understand the factors that influence the processes behind the loss of this element. Reducing P losses reduces eutrophication problems of both surface water and groundwater caused by an excess of this nutrient, along with other as nitrogen. Details of the experiments are presented below: The first experiment studies the forms of P contained in a series of 14 organic wastes of different origin and treatment (compost, sludge, slurry and digestate), comparing the information provided by three methods of P fractionation. The methods selected were: Ruttemberg protocol (1992); Standards, Measurements and Testing protocol (Ruban et al., 2001a); and Huang protocol (Huang et al., 2008). All fractionation methods employed successfully contribute to our knowledge of P forms in wastes, even though one of them was originally described for sediments or soils information. However, it is difficult to compare results among each other, as each protocol employs different extractants and time in the trials. Total amounts of P obtained by each method show a linear relationship, although the SMT method, which is more direct, obtains the highest amounts for all residues. Sequential methods (Huang and Ruttemberg’s protocols), despite being longer and more tedious, provide more detailed information on the availability of the forms of P. Therefore, allow the estimation of the potential losses of P after application in soil. Furthermore, positive relationships have been found among fractions obtained by these methods. Positive relationship has been found also among soluble forms of P and the concentration of ions Fe + Ca + Al, which is useful as an indicator of the availability of this element. However, the SMT protocol does not collect information about solubility or availability of forms of P contained; neither do certain forms maintain direct relations with the forms from other methods, with the exception of total P methods. To study the behavior of wastes applied to soils two experiments were conducted. Simulated rain systems were prepared to characterize P losses in the surface runoff generated. In addition, columns of soils amended with organic waste were developed for the study of P leaching losses. Simulated rain systems were carried out according to the ’National Phosphorus Research Project’ (2001), which manages to simulate successive rainfall events in conditions resembling reality. The experiment uses boxes filled with soil from the surface horizon amended with residues, both superficially and by mixing with the soil. Tests were conducted with six residues of different type and subjected to diverse treatments. Findings show significant differences in losses of the P forms analyzed in the generated runoff water, in both solution and particulate forms. In general, losses in the first rainfall event after application of waste were higher than the losses generated in the second event, predominating particulate forms of P over dissolved forms in both events. In all trials, a positive relationship was found between various P forms determined by sequential fractionation protocols (water soluble P and readily available P forms) and P losses in runoff. Furthermore, results from Vadas´s mathematical models (Vadas et al., 2005; 2007) to assess P losses by runoff fertilizers and manures indicate that the prediction of this model is not fulfilled in the case of all residues. The diverse physical properties of wastes may affect the differences between experimental and expected losses. Finally, leaching simulation processes were carried out in percolation columns, filled with soils amended with organic wastes, following the ‘CEN/TS 14405-2004 standard: Characterization of waste - Leaching behavior test - Test Flow ascending ’. P losses by leaching have been neglected for a long time with respect to runoff losses. However, findings corroborate previous studies showing that these P losses have to be taken into account, especially in certain types of soils and in zones near aquifers. To study the influence of soil type on P losses, experiments were carried out with three different soils and for each type of waste (manure, compost, digestate and sludge WWTP). Each soil’s P adsorption rates allow assessing which soils imply a higher risk of P losses when external sources of P are applied. P losses in leachate vary according to the type of soil employed and according to the specific residue. In the case of compost, manure and sludge, there is a relationship between leaching losses and residues’ soluble forms of P. The exception being the digestate, where there was no such correlation. Digestate P losses by leaching were lower than expected in all cases considering the forms of P contained. Moreover, examining digestate wettability -- that is, the physical property of the residue that assesses the capacity of waste-water interaction -- allowed explaining the anomalous behavior of this residue. Digestate has a high resistance to water entering its structure and thus higher difficulty to solubilize the P contained. Overall, studying the more available or soluble P forms provides useful information about the potential loss of P. However, this dissertation shows that it is necessary to examine the physical properties of organic residues applied as well as the P adsorption capacity of soils to estimate P losses, and thus to control eutrophication in water.
Resumo:
This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events.
Resumo:
Many food materials exist in a disordered amorphous solid state due to processing. Therefore, understanding the concept of amorphous state, its important phase transition (i.e., glass transition), and the related phenomena (e.g., enthalpy relaxation) is important to food scientists. Food saccharides, including mono-, di-, oligo-, and polysaccharides, are among the most important major components in food. Focusing on the food saccharides, this review covers important topics related to amorphous solids, including the concept and molecular arrangement of amorphous solid, the formation of amorphous food saccharides, the concept of glass transition and enthalpy relaxation, physical property changes and molecular mobility around the glass transition, measurement of the glass transition and enthalpy relaxation, their mathematical descriptions and models, and influences on food stability.
Resumo:
The thesis is concerned with the development and testing of a mathematical model of a distillation process in which the components react chemically. The formaldehyde-methanol-water system was selected and only the reversible reactions between formaldehyde and water giving methylene glycol and between formaldehyde and methanol producing hemiformal were assumed to occur under the distillation conditions. Accordingly the system has been treated as a five component system. The vapour-liquid equilibrium calculations were performed by solving iteratively the thermodynamic relationships expressing the phase equilibria with the stoichiometric equations expressing the chemical equilibria. Using optimisation techniques, the Wilson single parameters and Henry's constants were calculated for binary systems containing formaldehyde which was assumed to be a supercritical component whilst Wilson binary parameters were calculated for the remaining binary systems. Thus the phase equilibria for the formaldehyde system could be calculated using these parameters and good accuracy was obtained when calculated values were compared with experimental values. The distillation process was modelled using the mass and energy balance equations together with the phase equilibria calculations. The plate efficiencies were obtained from a modified A.I.Ch.E. Bubble Tray method. The resulting equations were solved by an iterative plate to plate calculation based on the Newton Raphson method. Experiments were carried out in a 76mm I.D., eight sieve plate distillation column and the results were compared with the mathematical model calculations. Overall, good agreement was obtained but some discrepancies were observed in the concentration profiles and these may have been caused by the effect of limited physical property data and a limited understanding of the reactions mechanism. The model equations were solved in the form of modular computer programs. Although they were written to describe the steady state distillation with simultaneous chemical reaction of the formaldehyde system, the approach used may be of wider application.
Resumo:
A pH-responsive ABA triblock copolymer, comprising poly(methyl methacrylate)-b/ock-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) [PMMA-b-PDEA-b-PMMA], has been cast Into thin films with a well-defined microstructure. Small Angle X-ray Scattering (SAXS) and Atomic Force Microscopy (AFM) studies confirm that this copolymer forms a hydrogel consisting of PMMA spheres embedded within a polybase PDEA matrix, with the PMMA domains acting as physical cross-links. The hydrogel has a pH-reversible coil-globule transition at around pH 4.5. This responsive physical property was exploited by immersing a sample of copolymer hydrogel in an aqueous solution containing a cyclic pH-oscillating reaction, whereby the pH was continuously oscillated above and below the transition pH so as to induce autonomous volume transitions. The changes in microscopic and macroscopic length scales correlate closely during (de)swelling cycles, with affine behaviour occurring over five orders of magnitude. Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA,.
Resumo:
Several works have reported that haematite has non-linear initial susceptibility at room temperature, like pyrrhotite or titanomagnetite, but there is no explanation for the observed behaviours yet. This study sets out to determine which physical property (grain size, foreign cations content and domain walls displacements) controls the initial susceptibility. The performed measurements include microprobe analysis to determine magnetic phases different to haematite; initial susceptibility (300 K); hysteresis loops, SIRM and backfield curves at 77 and 300 K to calculate magnetic parameters and minor loops at 77 K, to analyse initial susceptibility and magnetization behaviours below Morin transition. The magnetic moment study at low temperature is completed with measurements of zero field cooled-field cooled and AC susceptibility in a range from 5 to 300 K. The minor loops show that the non-linearity of initial susceptibility is closely related to Barkhausen jumps. Because of initial magnetic susceptibility is controlled by domain structure it is difficult to establish a mathematical model to separate magnetic subfabrics in haematite-bearing rocks.
Resumo:
Ocean Drilling Program Hole 990A penetrated 131 m of subaerially emplaced Paleocene flood basalts on the Southeast Greenland margin with a recovery of 74%. Shipboard P-wave velocity (Vp), density, and magnetic susceptibility were measured with 2- to 15-cm intervals on the core. Individual flow units were divided into four zones based on the observed petrophysical characteristics. From the top, these are Zone I (<7 m thick with a Vp of ~2.5 km/s), Zone II (3-5 m thick with a strongly increasing Vp from 2.5 to 5.5 km/s), Zone III (up to 20 m thick with a Vp of ~5.5-6.0 km/s), and Zone IV (<2 m thick with a strongly decreasing Vp from 6.0 to 2.5 km/s). Eighteen samples were selected from three of the fourteen penetrated basalt units for geochemical, petrological, and petrophysical studies focusing on the altered, low-velocity upper lava Zones I and II. Zone I is strongly altered to >50% clay minerals (smectite) and iron hydroxides, and the petrophysical properties are primarily determined by the clay properties. Zone II is intermediately altered with 5%-20% clay minerals, where the petrophysical properties are a function of both the degree of alteration and porosity variations. Shipboard and shore-based measurements of the same samples show that storage permanently lowers the elastic moduli of basalt from Zones I to III. This is related to the presence of even small quantities of swelling clays. The data show that alteration processes are important in determining the overall seismic properties of flood basalt constructions. The degree and depth of alteration is dependent on the primary lava flow emplacement structures and environment. Thus, the interplay of primary emplacement and secondary alteration structures determine the elastic properties of basalt piles. Rock property theories for sand-clay systems are further used to model the physical property variations in these altered crystalline rocks.
Resumo:
To minimize the side effects and the multidrug resistance (MDR) arising from daunorubicin (DNR) treatment of malignant lymphoma, a chemotherapy formulation of cysteamine-modified cadmium tellurium (Cys-CdTe) quantum dots coloaded with DNR and gambogic acid (GA) nanoparticles (DNR-GA-Cys-CdTe NPs) was developed. The physical property, drug-loading efficiency and drug release behavior of these DNR-GA-Cys-CdTe NPs were evaluated, and their cytotoxicity was explored by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide assay. These DNR-GA-Cys-CdTe NPs possessed a pH-responsive behavior, and displayed a dose-dependent antiproliferative activity on multidrug-resistant lymphoma Raji/DNR cells. The accumulation of DNR inside the cells, revealed by flow cytometry assay, and the down-regulated expression of P-glycoprotein inside the Raji/DNR cells measured by Western blotting assay indicated that these DNR-GA-Cys-CdTe NPs could minimize the MDR of Raji/DNR cells. This multidrug delivery system would be a promising strategy for minimizing MDR against the lymphoma.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field.
Resumo:
The following paper considers the question, where to office property? In doing so, it focuses, in the first instance, on identifying and describing a selection of key forces for change present within the contemporary operating environment in which office property functions. Given the increasingly complex, dynamic and multi-faceted character of this environment, the paper seeks to identify only the primary forces for change, within the context of the future of office property. These core drivers of change have, for the purposes of this discussion, been characterised as including a range of economic, demographic and socio-cultural factors, together with developments in information and communication technology. Having established this foundation, the paper proceeds to consider the manner in which these forces may, in the future, be manifested within the office property market. Comment is offered regarding the potential future implications of these forces for change together with their likely influence on the nature and management of the physical asset itself. Whilst no explicit time horizon has been envisioned in the preparation of this paper particular attention has been accorded short to medium term trends, that is, those likely to emerge in the office property marketplace over the coming two decades. Further, the paper considers the question posed, in respect of the future of office property, in the context of developed western nations. The degree of commonality seen in these mature markets is such that generalisations may more appropriately and robustly be applied. Whilst some of the comments offered with respect to the target market may find application in other arenas, it is beyond the scope of this paper to explicitly consider highly heterogeneous markets. Given also the wide scope of this paper key drivers for change and their likely implications for the commercial office property market are identified at a global level (within the above established parameters). Accordingly, the focus is necessarily such that it serves to reflect overarching directions at a universal level (with the effect being that direct applicability to individual markets - when viewed in isolation on a geographic or property type specific basis – may not be fitting in all instances)
Resumo:
Patent systems around the world are being pressed to recognise and protect challengingly new and exciting subject matter in order to keep pace with the rapid technological advancement of our age and the fact we are moving into the era of the ‘knowledge economy’. This rapid development and pressure to expand the bounds of what has traditionally been recognised as patentable subject matter has created uncertainty regarding what it is that the patent system is actually supposed to protect. Among other things, the patent system has had to contend with uncertainty surrounding claims to horticultural and agricultural methods, artificial living micro-organisms, methods of treating the human body, computer software and business methods. The contentious issue of the moment is one at whose heart lies the important distinction between what is a mere abstract idea and what is properly an invention deserving of the monopoly protection afforded by a patent. That question is whether purely intangible inventions, being methods that do not involve a physical aspect or effect or cause a physical transformation of matter, constitute patentable subject matter. This paper goes some way to addressing these uncertainties by considering how the Australian approach to the question can be informed by developments arising in the United States of America, and canvassing some of the possible lessons we in Australia might learn from the approaches taken thus far in the United States.