983 resultados para photosynthetic photon flux density (PPFD)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt ferrite (CoFe2O4) is an engineering material which is used for applications such as magnetic cores, magnetic switches, hyperthermia based tumor treatment, and as contrast agents for magnetic resonance imaging. Utility of ferrites nanoparticles hinges on its size, dispersibility in solutions, and synthetic control over its coercivity. In this work, we establish correlations between room temperature co-precipitation conditions, and these crucial materials parameters. Furthermore, post-synthesis annealing conditions are correlated with morphology, changes in crystal structure and magnetic properties. We disclose the synthesis and process conditions helpful in obtaining easily sinterable CoFe2O4 nanoparticles with coercive magnetic flux density (H-c) in the range 5.5-31.9 kA/m and M-s in the range 47.9-84.9 A.m(2)Kg(-1). At a grain size of similar to 54 +/- 2 nm (corresponding to 1073 K sintering temperature), multi-domain behavior sets in, which is indicated by a decrease in H-c. In addition, we observe an increase in lattice constant with respect to grain size, which is the inverse of what is expected of in ferrites. Our results suggest that oxygen deficiency plays a crucial role in explaining this inverse trend. We expect the method disclosed here to be a viable and scalable alternative to thermal decomposition based CoFe2O4 synthesis. The magnetic trends reported will aid in the optimization of functional CoFe2O4 nanoparticles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results of extensive follow-up observations of the gamma-ray pulsar J1732-3131, which has recently been detected at decametre wavelengths, and the results of deep searches for the counterparts of nine other radio-quiet gamma-ray pulsars at 34 MHz, using the Gauribidanur radio telescope. No periodic signal from J1732-3131 could be detected above a detection threshold of 8 sigma, even with an effective integration time of more than 40 h. However, the average profile obtained by combining data from several epochs, at a dispersion measure of 15.44 pc cm(-3), is found to be consistent with that from the earlier detection of this pulsar at a confidence level of 99.2 per cent. We present this consistency between the two profiles as evidence that J1732-3131 is a faint radio pulsar with an average flux density of 200-400 mJy at 34 MHz. Despite the extremely bright sky background at such low frequencies, the detection sensitivity of our deep searches is generally comparable to that of higher frequency searches for these pulsars, when scaled using reasonable assumptions about the underlying pulsar spectrum. We provide details of our deep searches, and put stringent upper limits on the decametre-wavelength flux densities of several radio-quiet gamma-ray pulsars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elettra is one of the first 3rd-generation storage rings, recently upgraded to routinely operate in top-up mode at both 2.0 and 2.4 GeV. The facility hosts four dedicated beamlines for crystallography, two open to the users and two under construction, and expected to be ready for public use in 2015. In service since 1994, XRD1 is a general-purpose diffraction beamline. The light source for this wide (4-21 keV) energy range beamline is a permanent magnet wiggler. XRD1 covers experiments ranging from grazing incidence X-ray diffraction to macromolecular crystallography, from industrial applications of powder diffraction to X-ray phasing with long wavelengths. The bending magnet powder diffraction beamline MCX has been open to users since 2009, with a focus on microstructural investigations and studies under non-ambient conditions. A superconducting wiggler delivers a high photon flux to a new fully automated beamline dedicated to macromolecular crystallography and to a branch beamline hosting a high-pressure powder X-ray diffraction station (both currently under construction). Users of the latter experimental station will have access to a specialized sample preparation laboratory, shared with the SISSI infrared beamline. A high throughput crystallization platform equipped with an imaging system for the remote viewing, evaluation and scoring of the macromolecular crystallization experiments has also been established and is open to the user community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray Photoelectron Spectroscopy (XPS) plays a central role in the investigation of electronic properties as well as compositional analysis of almost every conceivable material. However, a very short inelastic mean free path (IMFP) and the limited photon flux in standard laboratory conditions render this technique very much surface sensitive. Thus, the electronic structure buried below several layers of a heterogeneous sample is not accessible with usual photoemission techniques. An obvious way to overcome this limitation is to use a considerably higher energy photon source, as this increases the IMFP of the photo-ejected electron, thereby making the technique more depth and bulk sensitive. Due to this obvious advantage, Hard X-ray Photo Electron Spectroscopy (HAXPES) is rapidly becoming an extremely powerful tool for chemical, elemental, compositional and electronic characterization of bulk systems, more so with reference to systems characterized by the presence of buried interfaces and other types of chemical heterogeneity. The relevance of such an investigative tool becomes evident when we specifically note the ever-increasing importance of heterostructures and interfaces in the context of a wide range of device applications, spanning electronic, magnetic, optical and energy applications. The interest in this nondestructive, element specific HAXPES technique has grown rapidly in the past few years; we discuss critically its extensive use in the study of depth resolved electronic properties of nanocrystals, multilayer superlattices and buried interfaces, revealing their internal structures. We specifically present a comparative discussion, with examples, on two most commonly used methods to determine internal structures of heterostructured systems using XPS. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling study is performed to compare the flow and heat transfer characteristics of laminar and turbulent argon thermal-plasma jets impinging normally upon a flat plate in ambient air. The combined-diffusion-coefficient method and the turbulence-enhanced combined-diffusion-coefficient method are employed to treat the diffusion of argon in the argon-air mixture for the laminar and the turbulent cases, respectively. Modeling results presented include the flow, temperature and argon concentration fields, the air mass flow-rates entrained into the impinging plasma jets, and the distributions of the heat flux density on the plate surface. It is found that the formation of a radial wall jet on the plate surface appreciably enhances the mass flow rate of the ambient air entrained into the laminar or turbulent plasma impinging-jet. When the plate standoff distance is comparatively small, there exists a significant difference between the laminar and turbulent plasma impinging-jets in their flow fields due to the occurrence of a large closed recirculation vortex in the turbulent plasma impinging-jet, and no appreciable difference is found between the two types of jets in their maximum values and distributions of the heat flux density at the plate surface. At larger plate standoff distances, the effect of the plate on the jet flow fields only appears in the region near the plate, and the axial decaying-rates of the plasma temperature, axial velocity and argon mass fraction along the axis of the laminar plasma impinging-jet become appreciably less than their turbulent counterparts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling study is performed concerning the heat transfer and fluid flow for a laminar argon plasma jet impinging normally upon a flat workpiece exposed to the ambient air. The diffusion of the air into the plasma jet is handled by using the combined-diffusion-coefficient approach. The heat flux density and jet shear stress distributions at the workpiece surface obtained from the plasma jet modeling are then used to study the re-melting process of a carbon steel workpiece. Besides the heat conduction within the workpiece, the effects of the plasma-jet inlet parameters (temperature and velocity), workpiece moving speed, Marangoni convection, natural convection etc. on the re-melting process are considered. The modeling results demonstrate that the shapes and sizes of the molten pool in the workpiece are influenced appreciably by the plasma-jet inlet parameters, workpiece moving speed and Marangoni convection. The jet shear stress manifests its effect at higher plasma-jet inlet velocities, while the natural convection effect can be ignored. The modeling results of the molten pool sizes agree reasonably with available experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters n(e), v, w, L, w(b). The phi800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 similar to 35) GHz (w = 2pif, wave length lambda = 15 cm similar to 8 mm). The electron density in the plasma is n(e) = (3 x 10(10) similar to 1 x 10(14)) cm(-3). The collision frequency v = (1 x 10(8) similar to 6 x 10(10)) Hz. The thickness of the plasma layer L = (2 similar to 80) cm. The electron circular frequency w(b) = eB(0)/m(e), magnetic flux density B-0 = (0 similar to 0.84) T. The experimental results show that when the plasma layer is thick (such as L/lambda greater than or equal to 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters n(e), v, w, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and lambda are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range, but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters n(e), v, w, L. In fact, if w < w(p), v(2) much less than w(2), the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if w > w(p), v(2) much less than w(2) (just v approximate to f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power attenuation value under the magnetic field and without a magnetic field. The result indicates that the value measured under the magnetic field shows a distinct improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building integrated photovoltaics (BIPV) has potential of becoming the mainstream of renewable energy in the urban environment. BIPV has significant influence on the thermal performance of building envelope and changes radiation energy balance by adding or replacing conventional building elements in urban areas. PTEBU model was developed to evaluate the effect of photovoltaic (PV) system on the microclimate of urban canopy layer. PTEBU model consists of four sub-models: PV thermal model, PV electrical performance model, building energy consumption model, and urban canyon energy budget model. PTEBU model is forced with temperature, wind speed, and solar radiation above the roof level and incorporates detailed data of PV system and urban canyon in Tianjin, China. The simulation results show that PV roof and PV façade with ventilated air gap significantly change the building surface temperature and sensible heat flux density, but the air temperature of urban canyon with PV module varies little compared with the urban canyon of no PV. The PV module also changes the magnitude and pattern of diurnal variation of the storage heat flux and the net radiation for the urban canyon with PV increase slightly. The increase in the PV conversion efficiency not only improves the PV power output, but also reduces the urban canyon air temperature. © 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the authors investigate the electromagnetic properties of stacks of high temperature superconductor (HTS) coated conductors with a particular focus on calculating the total transport AC loss. The cross-section of superconducting cables and coils is often modeled as a two-dimensional stack of coated conductors, and these stacks can be used to estimate the AC loss of a practical device. This paper uses a symmetric two dimensional (2D) finite element model based on the H formulation, and a detailed investigation into the effects of a magnetic substrate on the transport AC loss of a stack is presented. The number of coated conductors in each stack is varied from 1 to 150, and three types of substrate are compared: non-magnetic weakly magnetic and strongly magnetic. The non-magnetic substrate model is comparable with results from existing models for the limiting cases of a single tape (Norris) and an infinite stack (Clem). The presence of a magnetic substrate increases the total AC loss of the stack, due to an increased localized magnetic flux density, and the stronger the magnetic material, the further the flux penetrates into the stack overall. The AC loss is calculated for certain tapes within the stack, and the differences and similarities between the losses throughout the stack are explained using the magnetic flux penetration and current density distributions in those tapes. The ferromagnetic loss of the substrate itself is found to be negligible in most cases, except for small magnitudes of current. Applying these findings to practical applications, where AC transport current is involved, superconducting coils should be wound where possible using coated conductors with a non-magnetic substrate to reduce the total AC loss in the coil. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel technique is proposed to magnetize bulk superconductors, which has the potential to build up strong superconducting magnets. Instead of conventionally using strong magnetic pulses, periodical magnetic waves with strength as low as that of rare-earth magnets are applied. These magnetic waves travel from the periphery to the center of a bulk superconductor and become trapped little by little. In this way, bulk superconductors can gradually be magnetized. To generate these magnetic waves, a thermally actuated magnet was developed, which is constructed by a heating/cooling switch system, a rare-earth bulk magnet, and a Gadolinium (Gd) bulk. The heating/cooling switch system controls the temperature of the Gd bulk, which, along with the rare-earth magnet underneath, can transform thermal signals into magnetic waves. The modeling results of the thermally actuated magnet show that periodical magnetic waves can effectively be generated by applying heating and cooling pulses in turn. A YBCO bulk was tested in liquid nitrogen under the magnetic waves, and a notable accumulation of magnetic flux density was observed. © 2006 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a magnetic circuit model (MCM) for the design of a brushless doubly-fed machine (BDFM). The BDFM possesses advantages in terms of high reliability and reduced gearbox stages, and it requires a fractionally-rated power converter. This makes it suitable for utilization in offshore wind turbines. It is difficult for conventional design methods to calculate the flux in the stator because the two sets of stator windings, which have different pole number, form a complex flux pattern which is not easily determined using common analytical approaches. However, it is advantageous to predict the flux density in the teeth and air-gap at the initial design stage for sizing purposes without recourse finite element analysis. Therefore a magnetic circuit model is developed in this paper to calculate the flux density. A BDFM is used as a case study with FEA validation. © 1965-2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparative study of ac magnetization losses in two types of 2 G HTS racetrack coils. The magnetic substrate made by RABiTS is the main difference between the two types, because ferromagnetic loss caused by magnetic substrate is accounted into the total ac losses. IBAD and RABiTS tapes were successfully wound into racetrack shape with identical geometry. The measurements were carried out by using electromagnetic method with pick-up coils under a sinusoidally varying external magnetic field, with amplitudes up to 27 mT, ranging from 10 Hz to 100 Hz at a temperature of 77 K. The field was oriented perpendicularly to the surface of the tapes. Experimental measurements were validated by applying theoretical models and the results showed that the magnetization loss in the MAG RABiTS coil is always higher than that in the NON MAG coil due to the presence of the magnetic substrate, which increases the magnetic field penetration into the coil and causes higher magnetic flux density within the penetrated region. © 2002-2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that tubes of melt cast Bi-2212 used as current leads for LTS magnets can also act as efficient magnetic shields. The magnetic screening properties under an axial DC magnetic field are characterized at several temperatures below the liquid nitrogen temperature (77 K). Two main shielding properties are studied and compared with those of Bi-2223, a material that has been considered in the past for bulk magnetic shields. The first property is related to the maximum magnetic flux density that can be screened, Blim; it is defined as the applied magnetic flux density below which the field attenuation measured at the centre of the shield exceeds 1000. For a cylinder of Bi-2212 with a wall thickness of 5 mm and a large ratio of length over radius, Blim is evaluated to 1 T at T = 10 K. This value largely exceeds the Blim value measured at the same temperature on similar tubes of Bi-2223. The second shielding property that is characterized is the dependence of Blim with respect to variations of the sweep rate of the applied field, dBapp/dt. This dependence is interpreted in terms of the power law E = Ec(J/Jc)^n and allows us to determine the exponent n of this E(J) characteristics for Bi-2212. The characterization of the magnetic field relaxation involves very small values of the electric field. This gives us the opportunity to experimentally determine the E(J) law in an unexplored region of small electric fields. Combining these results with transport and AC shielding measurements, we construct a piecewise E(J) law that spans over 8 orders of magnitude of the electric field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trapped magnetic field is examined in bulk high-temperature superconductors that are artificially drilled along their c-axis. The influence of the hole pattern on the magnetization is studied and compared by means of numerical models and Hall probe mapping techniques. To this aim, we consider two bulk YBCO samples with a rectangular cross-section that are drilled each by six holes arranged either on a rectangular lattice (sample I) or on a centered rectangular lattice (sample II). For the numerical analysis, three different models are considered for calculating the trapped flux: (i), a two-dimensional (2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D finite-element model neglecting demagnetizing effects but incorporating magnetic relaxation in the form of an E-J power law, and, (iii), a 3D finite element analysis that takes into account both the finite height of the sample and flux creep effects. For the experimental analysis, the trapped magnetic flux density is measured above the sample surface by Hall probe mapping performed before and after the drilling process. The maximum trapped flux density in the drilled samples is found to be smaller than that in the plain samples. The smallest magnetization drop is found for sample II, with the centered rectangular lattice. This result is confirmed by the numerical models. In each sample, the relative drops that are calculated independently with the three different models are in good agreement. As observed experimentally, the magnetization drop calculated in the sample II is the smallest one and its relative value is comparable to the measured one. By contrast, the measured magnetization drop in sample (1) is much larger than that predicted by the simulations, most likely because of a change of the microstructure during the drilling process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use macroscopic holes drilled in a bulk YBCO superconductor to probe its magnetic properties in the volume of the sample. The sample is subjected to an AC magnetic flux with a density ranging from 30mT to 130mT and the flux in the superconductor is probed by miniature coils inserted in the holes. In a given hole, three different penetration regimes can be observed: (i) the shielded regime, where no magnetic flux threads the hole; (ii) the gradual penetration regime, where the waveform of the magnetic field has a clipped sine shape whose fundamental component scales with the applied field; and (iii) the flux concentration regime, where the waveform of the magnetic field is nearly a sine wave, with an amplitude exceeding that of the applied field by up to a factor of two. The distribution of the penetration regimes in the holes is compared with that of the magnetic flux density at the top and bottom surfaces of the sample, and is interpreted with the help of optical polarized light micrographs of these surfaces. We show that the measurement of the magnetic field inside the holes can be used as a local characterization of the bulk magnetic properties of the sample.