915 resultados para peak-to-plateau ratio
Resumo:
This paper proposes a quiet zone probing approach which deals with low dynamic range quiet zone acquisitions. Lack of dynamic range is a feature of millimeter and sub-millimeter wavelength technologies. It is consequence of the gradually smaller power generated by the instrumentation, that follows a f^α law with frequency, being α≥1 variable depending on the signal source’s technology. The proposed approach is based on an optimal data reduction scenario which redounds in a maximum signal to noise ratio increase for the signal pattern, with minimum information losses. After theoretical formulation, practical applications of the technique are proposed.
Resumo:
Background Magnetoencephalography (MEG) provides a direct measure of brain activity with high combined spatiotemporal resolution. Preprocessing is necessary to reduce contributions from environmental interference and biological noise. New method The effect on the signal-to-noise ratio of different preprocessing techniques is evaluated. The signal-to-noise ratio (SNR) was defined as the ratio between the mean signal amplitude (evoked field) and the standard error of the mean over trials. Results Recordings from 26 subjects obtained during and event-related visual paradigm with an Elekta MEG scanner were employed. Two methods were considered as first-step noise reduction: Signal Space Separation and temporal Signal Space Separation, which decompose the signal into components with origin inside and outside the head. Both algorithm increased the SNR by approximately 100%. Epoch-based methods, aimed at identifying and rejecting epochs containing eye blinks, muscular artifacts and sensor jumps provided an SNR improvement of 5–10%. Decomposition methods evaluated were independent component analysis (ICA) and second-order blind identification (SOBI). The increase in SNR was of about 36% with ICA and 33% with SOBI. Comparison with existing methods No previous systematic evaluation of the effect of the typical preprocessing steps in the SNR of the MEG signal has been performed. Conclusions The application of either SSS or tSSS is mandatory in Elekta systems. No significant differences were found between the two. While epoch-based methods have been routinely applied the less often considered decomposition methods were clearly superior and therefore their use seems advisable.
Resumo:
Natural gas hydrates are clathrates in which water molecules form a crystalline framework that includes and is stabilized by natural gas (mainly methane) at appropriate conditions of high pressures and low temperatures. The conditions for the formation of gas hydrates are met within continental margin sediments below water depths greater than about 500 m where the supply of methane is sufficient to stabilize the gas hydrate. Observations on DSDP Leg 11 suggested the presence of gas hydrates in sediments of the Blake Outer Ridge. Leg 76 coring and sampling confirms that, indeed, gas hydrates are present there. Geochemical evidence for gas hydrates in sediment of the Blake Outer Ridge includes (1) high concentrations of methane, (2) a sediment sample with thin, matlike layers of white crystals that released a volume of gas twenty times greater than its volume of pore fluid, (3) a molecular distribution of hydrocarbon gases that excluded hydrocarbons larger than isobutane, (4) results from pressure core barrel experiments, and (5) pore-fluid chemistry. The molecular composition of the hydrocarbons in these gas hydrates and the isotopic composition of the methane indicate that the gas is derived mainly from microbiological processes operating on the organic matter within the sediment. Although gas hydrates apparently are widespread on the Blake Outer Ridge, they probably are not of great economic significance as a potential, unconventional, energy resource or as an impermeable cap for trapping upwardly migrating gas at Site 533.
Resumo:
Optical coherence tomography (OCT) is an emerging coherence-domain technique capable of in vivo imaging of sub-surface structures at millimeter-scale depth. Its steady progress over the last decade has been galvanized by a breakthrough detection concept, termed spectral-domain OCT, which has resulted in a dramatic improvement of the OCT signal-to-noise ratio of 150 times demonstrated for weakly scattering objects at video-frame-rates. As we have realized, however, an important OCT sub-system remains sub-optimal: the sample arm traditionally operates serially, i.e. in flying-spot mode. To realize the full-field image acquisition, a Fourier holography system illuminated with a swept-source is employed instead of a Michelson interferometer commonly used in OCT. The proposed technique, termed Fourier-domain OCT, offers a new leap in signal-to-noise ratio improvement, as compared to flying-spot OCT systems, and represents the main thrust of this paper. Fourier-domain OCT is described, and its basic theoretical aspects, including the reconstruction algorithm, are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report a new approach in optical coherence tomography (OCT) called full-field Fourier-domain OCT (3F-OCT). A three-dimensional image of a sample is obtained by digital reconstruction of a three-dimensional data cube, acquired with a Fourier holography recording system, illuminated with a swept source. We present a theoretical and experimental study of the signal-to-noise ratio of the 3F-OCT approach versus serial image acquisition (flying-spot OCT) approach. (c) 2005 Optical Society of America.
Resumo:
We investigate the effect of transmitter and receiver array configurations on the stray-light and diffraction-caused crosstalk in free-space optical interconnects. The optical system simulation software (Code V) is used to simulate both the stray-light and diffraction-caused crosstalk. Experimentally measured, spectrally-resolved, near-field images of VCSEL higher order modes were used as extended sources in our simulation model. Our results show that by changing the square lattice geometry to a hexagonal configuration, we obtain the reduction in the stray-light crosstalk of up to 9 dB and an overall signal-to-noise ratio improvement of 3 dB.
Resumo:
A new type of space debris was recently discovered by Schildknecht in near -geosynchronous orbit (GEO). These objects were later identified as exhibiting properties associated with High Area-to-Mass ratio (HAMR) objects. According to their brightness magnitudes (light curve), high rotation rates and composition properties (albedo, amount of specular and diffuse reflection, colour, etc), it is thought that these objects are multilayer insulation (MLI). Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that their shapes are easily deformed leading to changes in the Area-to-Mass ratio (AMR) over time. This thesis proposes a simple effective flexible model of the thin, deformable membrane with two different methods. Firstly, this debris is modelled with Finite Element Analysis (FEA) by using Bernoulli-Euler theory called “Bernoulli model”. The Bernoulli model is constructed with beam elements consisting 2 nodes and each node has six degrees of freedom (DoF). The mass of membrane is distributed in beam elements. Secondly, the debris based on multibody dynamics theory call “Multibody model” is modelled as a series of lump masses, connected through flexible joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account with lump masses in the joints. The dynamic equations for the masses, including the constraints defined by the connecting rigid rod, are derived using fundamental Newtonian mechanics. The physical properties of both flexible models required by the models (membrane density, reflectivity, composition, etc.), are assumed to be those of multilayer insulation. Both flexible membrane models are then propagated together with classical orbital and attitude equations of motion near GEO region to predict the orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field, luni-solar gravitational fields and self-shadowing effect. These results are then compared to two rigid body models (cannonball and flat rigid plate). In this investigation, when comparing with a rigid model, the evolutions of orbital elements of the flexible models indicate the difference of inclination and secular eccentricity evolutions, rapid irregular attitude motion and unstable cross-section area due to a deformation over time. Then, the Monte Carlo simulations by varying initial attitude dynamics and deformed angle are investigated and compared with rigid models over 100 days. As the results of the simulations, the different initial conditions provide unique orbital motions, which is significantly different in term of orbital motions of both rigid models. Furthermore, this thesis presents a methodology to determine the material dynamic properties of thin membranes and validates the deformation of the multibody model with real MLI materials. Experiments are performed in a high vacuum chamber (10-4 mbar) replicating space environment. A thin membrane is hinged at one end but free at the other. The free motion experiment, the first experiment, is a free vibration test to determine the damping coefficient and natural frequency of the thin membrane. In this test, the membrane is allowed to fall freely in the chamber with the motion tracked and captured through high velocity video frames. A Kalman filter technique is implemented in the tracking algorithm to reduce noise and increase the tracking accuracy of the oscillating motion. The forced motion experiment, the last test, is performed to determine the deformation characteristics of the object. A high power spotlight (500-2000W) is used to illuminate the MLI and the displacements are measured by means of a high resolution laser sensor. Finite Element Analysis (FEA) and multibody dynamics of the experimental setups are used for the validation of the flexible model by comparing with the experimental results of displacements and natural frequencies.
Resumo:
The quality of the image of 18F-FDG PET/CT scans in overweight patients is commonly degraded. This study evaluates, retrospectively, the relation between SNR, weight and dose injected in 65 patients, with a range of weights from 35 to 120 kg, with scans performed using the Biograph mCT using a standardized protocol in the Nuclear Medicine Department at Radboud University Medical Centre in Nijmegen, The Netherlands. Five ROI’s were made in the liver, assumed to be an organ of homogenous metabolism, at the same location, in five consecutive slices of the PET/CT scans to obtain the mean uptake (signal) values and its standard deviation (noise). The ratio of both gave us the Signal-to- Noise Ratio in the liver. With the help of a spreadsheet, weight, height, SNR and Body Mass Index were calculated and graphs were designed in order to obtain the relation between these factors. The graphs showed that SNR decreases as the body weight and/or BMI increased and also showed that, even though the dose injected increased, the SNR also decreased. This is due to the fact that heavier patients receive higher dose and, as reported, heavier patients have less SNR. These findings suggest that the quality of the images, measured by SNR, that were acquired in heavier patients are worst than thinner patients, even though higher FDG doses are given. With all this taken in consideration, it was necessary to make a new formula to calculate a new dose to give to patients and having a good and constant SNR in every patient. Through mathematic calculations, it was possible to reach to two new equations (power and exponential), which would lead to a SNR from a scan made with a specific reference weight (86 kg was the considered one) which was independent of body mass. The study implies that with these new formulas, patients heavier than the reference weight will receive higher doses and lighter patients will receive less doses. With the median being 86 kg, the new dose and new SNR was calculated and concluded that the quality of the image remains almost constant as the weight increases and the quantity of the necessary FDG remains almost the same, without increasing the costs for the total amount of FDG used in all these patients.
Calculation of mutual information for nonlinear communication channel at large signal-to-noise ratio
Resumo:
Using the path-integral technique we examine the mutual information for the communication channel modeled by the nonlinear Schrödinger equation with additive Gaussian noise. The nonlinear Schrödinger equation is one of the fundamental models in nonlinear physics, and it has a broad range of applications, including fiber optical communications - the backbone of the internet. At large signal-to-noise ratio we present the mutual information through the path-integral, which is convenient for the perturbative expansion in nonlinearity. In the limit of small noise and small nonlinearity we derive analytically the first nonzero nonlinear correction to the mutual information for the channel.
Resumo:
Background: Indices predictive of central obesity include waist circumference (WC) and waist-to-height ratio (WHtR). The aims of this study were 1) to establish a Colombian youth smoothed centile charts and LMS tables for WC and WHtR and 2) to evaluate the utility of these parameters as predictors of overweight and obesity. Method: A cross-sectional study whose sample population comprised 7954 healthy Colombian schoolchildren [boys n=3460 and girls n=4494, mean (standard deviation) age 12.8 (2.3) years old]. Weight, height, body mass index (BMI), WC and WHtR and its percentiles were calculated. Appropriate cut-offs point of WC and WHtR for overweight and obesity, as defined by the International Obesity Task Force (IOTF) definitions, were selected using receiver operating characteristic (ROC) analysis. The discriminating power of WC and WHtR was expressed as area under the curve (AUC). Results: Reference values for WC and WHtR are presented. Mean WC increased and WHtR decreased with age for both genders. We found a moderate positive correlation between WC and BMI (r= 0.756, P < 0.01) and WHtR and BMI (r= 0.604, P < 0.01). The ROC analysis showed a high discrimination power in the identification of overweight and obesity for both measures in our sample population. Overall, WHtR was slightly a better predictor for overweight/obesity (AUC 95% CI 0.868-0.916) than the WC (AUC 95% CI 0.862-0.904). Conclusion: This paper presents the first sex- and age-specific WC and WHtR percentiles for both measures among Colombian children and adolescents aged 9–17.9 years. By providing LMS tables for Latin-American people based on Colombian reference data, we hope to provide quantitative tools for the study of obesity and its comorbidities.
Resumo:
In this work, we present a study on the negative differential resistance (NDR) behavior and the impact of various deformations (like ripple, twist, wrap) and defects like vacancies and edge roughness on the electronic properties of short-channel MoS2 armchair nanoribbon MOSFETs. The effect of deformation (3 degrees-7 degrees twist or wrap and 0.3-0.7 angstrom ripple amplitude) and defects on a 10 nm MoS2 ANR FET is evaluated by the density functional tight binding theory and the non-equilibrium Green's function approach. We study the channel density of states, transmission spectra, and the I-D-V-D characteristics of such devices under the varying conditions, with focus on the NDR behavior. Our results show significant change in the NDR peak to valley ratio and the NDR window with such minor intrinsic deformations, especially with the ripple. (C) 2013 AIP Publishing LLC.
Resumo:
Taking the inhomogenous broadening of the electron energy levels into account, a coherent model of the resonant tunneling (RT) of electrons in double quantum wells is presented. The validity of the model is confirmed with the experiments [M. Nido et al., Proc. SPIE 1268, 177 (1990)], and shows that the tunneling process can be explained by the simple coherent theory even in the presence of the carrier scattering. We have discussed the dependence of resonant tunneling on the barrier thickness L(B) by introducing the contrast ratio LAMBDA and the full width at half depth of the RT valley, and found that LAMBDA first increases with increasing barrier thickness, reaches a maximum, and then decreases with a further increase of L(B), in striking contrast to the Fabry-Perot model where a monotonic increase of the peak-to-valley ratio is predicted. We attribute the reduction of LAMBDA with large L(B) to the energy broadening resulting from the carrier scattering. A monotonic decrease of the full width at half depth of the RT valley with an increase of L(R) is also found.