925 resultados para numerical analysis
Resumo:
The effective notch stress approach for the fatigue strength assessment of welded structures as included in the Fatigue Design Recommendation of the IIW requires the numerical analysis of the elastic notch stress in the weld toe and weld root which is fictitiously rounded with a radius of 1mm. The goal of this thesis work was to consider alternate meshing strategies when using the effective notch stress approach to assess the fatigue strength of load carrying partial penetration fillet-welded cruciform joints. In order to establish guidelines for modeling the joint and evaluating the results, various two-dimensional (2D) finite element analyses were carried out by systematically varying the thickness of the plates, the weld throat thickness, the degree of bending, and the shape and location of the modeled effective notch. To extend the scope of this work, studies were also carried out on the influence of
Resumo:
Second-rank tensor interactions, such as quadrupolar interactions between the spin- 1 deuterium nuclei and the electric field gradients created by chemical bonds, are affected by rapid random molecular motions that modulate the orientation of the molecule with respect to the external magnetic field. In biological and model membrane systems, where a distribution of dynamically averaged anisotropies (quadrupolar splittings, chemical shift anisotropies, etc.) is present and where, in addition, various parts of the sample may undergo a partial magnetic alignment, the numerical analysis of the resulting Nuclear Magnetic Resonance (NMR) spectra is a mathematically ill-posed problem. However, numerical methods (de-Pakeing, Tikhonov regularization) exist that allow for a simultaneous determination of both the anisotropy and orientational distributions. An additional complication arises when relaxation is taken into account. This work presents a method of obtaining the orientation dependence of the relaxation rates that can be used for the analysis of the molecular motions on a broad range of time scales. An arbitrary set of exponential decay rates is described by a three-term truncated Legendre polynomial expansion in the orientation dependence, as appropriate for a second-rank tensor interaction, and a linear approximation to the individual decay rates is made. Thus a severe numerical instability caused by the presence of noise in the experimental data is avoided. At the same time, enough flexibility in the inversion algorithm is retained to achieve a meaningful mapping from raw experimental data to a set of intermediate, model-free
Resumo:
This thesis describes the development and analysis of an Isosceles Trapezoidal Dielectric Resonator Antenna (ITDRA) by realizing different DR orientations with suitable feed configurations enabling it to be used as multiband, dual band dual polarized and wideband applications. The motivation for this work has been inspired by the need for compact, high efficient, low cost antenna suitable for multi band application, dual band dual polarized operation and broadband operation with the possibility of using with MICs, and to ensure less expensive, more efficient and quality wireless communication systems. To satisfy these challenging demands a novel shaped Dielectric Resonator (DR) is fabricated and investigated for the possibility of above required properties by trying out different orientations of the DR on a simple microstrip feed and with slotted ground plane as well. The thesis initially discusses and evaluates recent and past developments taken place within the microwave industry on this topic through a concise review of literature. Then the theoretical aspects of DRA and different feeding techniques are described. Following this, fabrication and characterization of DRA is explained. To achieve the desired requirements as above both simulations and experimental measurements were undertaken. A 3-D finite element method (FEM) electromagnetic simulation tool, HFSSTM by Agilent, is used to determine the optimum geometry of the dielectric resonator. It was found to be useful in producing approximate results although it had some limitations. A numerical analysis technique, finite difference time domain (FDTD) is used for validating the results of wide band design at the end. MATLAB is used for modeling the ITDR and implementing FDTD analysis. In conclusion this work offers a new, efficient and relatively simple alternative for antennas to be used for multiple requirements in the wireless communication system.
Resumo:
We consider the two-point boundary value problem for stiff systems of ordinary differential equations. For systems that can be transformed to essentially diagonally dominant form with appropriate smoothness conditions, a priori estimates are obtained. Problems with turning points can be treated with this theory, and we discuss this in detail. We give robust difference approximations and present error estimates for these schemes. In particular we give a detailed description of how to transform a general system to essentially diagonally dominant form and then stretch the independent variable so that the system will satisfy the correct smoothness conditions. Numerical examples are presented for both linear and nonlinear problems.
Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the $p$-version
Resumo:
Plane wave discontinuous Galerkin (PWDG) methods are a class of Trefftz-type methods for the spatial discretization of boundary value problems for the Helmholtz operator $-\Delta-\omega^2$, $\omega>0$. They include the so-called ultra weak variational formulation from [O. Cessenat and B. Després, SIAM J. Numer. Anal., 35 (1998), pp. 255–299]. This paper is concerned with the a priori convergence analysis of PWDG in the case of $p$-refinement, that is, the study of the asymptotic behavior of relevant error norms as the number of plane wave directions in the local trial spaces is increased. For convex domains in two space dimensions, we derive convergence rates, employing mesh skeleton-based norms, duality techniques from [P. Monk and D. Wang, Comput. Methods Appl. Mech. Engrg., 175 (1999), pp. 121–136], and plane wave approximation theory.
Resumo:
In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods.
Resumo:
In this work we construct reliable a posteriori estimates for some semi- (spatially) discrete discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the relative entropy stability framework, which leads to error control in the case of smooth solutions. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin schemes with standard flux choices which appear in the approximation of conservation laws. In addition to the analysis, we conduct some numerical benchmarking to test the robustness of the resultant estimator.
Resumo:
We present and analyse a space–time discontinuous Galerkin method for wave propagation problems. The special feature of the scheme is that it is a Trefftz method, namely that trial and test functions are solution of the partial differential equation to be discretised in each element of the (space–time) mesh. The method considered is a modification of the discontinuous Galerkin schemes of Kretzschmar et al. (2014) and of Monk & Richter (2005). For Maxwell’s equations in one space dimension, we prove stability of the method, quasi-optimality, best approximation estimates for polynomial Trefftz spaces and (fully explicit) error bounds with high order in the meshwidth and in the polynomial degree. The analysis framework also applies to scalar wave problems and Maxwell’s equations in higher space dimensions. Some numerical experiments demonstrate the theoretical results proved and the faster convergence compared to the non-Trefftz version of the scheme.
Resumo:
We give an a posteriori analysis of a semidiscrete discontinuous Galerkin scheme approximating solutions to a model of multiphase elastodynamics, which involves an energy density depending not only on the strain but also the strain gradient. A key component in the analysis is the reduced relative entropy stability framework developed in Giesselmann (2014, SIAM J. Math. Anal., 46, 3518–3539). This framework allows energy-type arguments to be applied to continuous functions. Since we advocate the use of discontinuous Galerkin methods we make use of two families of reconstructions, one set of discrete reconstructions and a set of elliptic reconstructions to apply the reduced relative entropy framework in this setting.
Resumo:
The count intercept is a robust method for the numerical analysis of fabrics Launeau and Robin (1996). It counts the number of intersections between a set of parallel scan lines and a mineral phase, which must be identified on a digital image. However, the method is only sensitive to boundaries and therefore supposes the user has some knowledge about their significance. The aim of this paper is to show that a proper grey level detection of boundaries along scan lines is sufficient to calculate the two-dimensional anisotropy of grain or crystal distributions without any particular image processing. Populations of grains and crystals usually display elliptical anisotropies in rocks. When confirmed by the intercept analysis, a combination of a minimum of 3 mean length intercept roses, taken on 3 more or less perpendicular sections, allows the calculation of 3-dimensional ellipsoids and the determination of their standard deviation with direction and intensity in 3 dimensions as well. The feasibility of this quick method is attested by numerous examples on theoretical objects deformed by active and passive deformation, on BSE images of synthetic magma flow, on drawing or direct analysis of thin section pictures of sandstones and on digital images of granites directly taken and measured in the field. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this work is to provide a brief overview of the literature on the optimal design of unemployment insurance systems by analyzing some of the most influential articles published over the last three decades on the subject and extend the main results to a multiple aggregate shocks environment. The properties of optimal contracts are discussed in light of the key assumptions commonly made in theoretical publications on the area. Moreover, the implications of relaxing each of these hypothesis is reckoned as well. The analysis of models of only one unemployment spell starts from the seminal work of Shavell and Weiss (1979). In a simple and common setting, unemployment benefits policies, wage taxes and search effort assignments are covered. Further, the idea that the UI distortion of the relative price of leisure and consumption is the only explanation for the marginal incentives to search for a job is discussed, putting into question the reduction in labor supply caused by social insurance, usually interpreted as solely an evidence of a dynamic moral hazard caused by a substitution effect. In addition, the paper presents one characterization of optimal unemployment insurance contracts in environments in which workers experience multiple unemployment spells. Finally, an extension to multiple aggregate shocks environment is considered. The paper ends with a numerical analysis of the implications of i.i.d. shocks to the optimal unemployment insurance mechanism.
Resumo:
Trabalho apresentado no Congresso Nacional de Matemática Aplicada à Indústria, 18 a 21 de novembro de 2014, Caldas Novas - Goiás
Resumo:
The objective of this paper is the numerical study of the behavior of reinforced concrete beams and columns by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of equilibrium curves to the beams and force-strain curves to the columns. The numeric responses are confronted with experimental results found in the literature in order to check there liability of the numerical analyses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)