975 resultados para nitrogen 15
Resumo:
"Issued October 1, 1956."
Resumo:
Information on decomposition of harvest residues may assist in the maintenance of soil fertility in second rotation (2R) hoop pine plantations (Araucaria cunninghamii Aiton ex A. Cunn.) of subtropical Australia. The experiment was undertaken to determine the dynamics of residue decomposition and fate of residue-derived N. We used N-15-labeled hoop pine foliage, branch, and stem material in microplots, over a 30-mo period following harvesting. We examined the decomposition of each component both singly and combined, and used C-13 cross-polarization and magic-angle spinning nuclear magnetic resonance (C-13 CPMAS NMR) to chart C transformations in decomposing foliage. Residue-derived N-15 was immobilized in the 0- to 5-cm soil layer, with approximately 40% N-15 recovery in the soil from the combined residues by the end of the 30-mo period. Total recovery of N-15 in residues and soil varied between 60 and 80% for the combined-residue microplots, with 20 to 40% of the residue N-15 apparently lost. When residues were combined within microplots the rate of foliage decomposition decreased by 30% while the rate of branch and stem decomposition increased by 50 and 40% compared with rates for these components when decomposed separately. Residue decomposition studies should include a combined-residue treatment. Based on C-15 CPMAS NMR spectra for decomposing foliage, we obtained good correlations for methoxyl C, aryl C, carbohydrate C and phenolic C with residue mass, N-15 enrichment, and total N. The ratio of carbohydrate C to methoxyl C may be useful as an indicator of harvest residue decomposition in hoop pine plantations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Stable nitrogen isotope signatures of major sources of mineral nitrogen ( mineralization of soil organic nitrogen, biological N-2 fixation by legumes, annual precipitation and plant litter decomposition) were measured to relatively define their individual contribution to grass assimilation at the Haibei Alpine Meadow Ecosystem, Qinghai, China. The results indicated that delta N-15 values (- 2.40 parts per thousand to 0.97 parts per thousand) of all grasses were much lower than those of soil organic matter (3.4 +/- 0.18 parts per thousand) and mineral nitrogen ( ammonium and nitrate together,7.8 +/- 0.57 parts per thousand). Based on the patterns of stable nitrogen isotopes, soil organic matter (3.4 +/- 0.18 parts per thousand), biological N-2 fixation (0 parts per thousand), and precipitation (- 6.34 +/- 0.24 parts per thousand) only contributed to a small fraction of nitrogen requirements of grasses, but plant litter decomposition (- 1.31 +/- 1.01 parts per thousand) accounted for 67%.
Resumo:
The objective of the present study was to trace the inclusion of poultry offal meal (POM) in the diet of meat-type quails reared for a long period using the technique of stable isotopes. A number of 320 quails were randomly distributed into eight treatments: vegetable diet (T1), and a diet containing 8% POM were fed until the end of the experimental period (T2) or replaced by the vegetable diet on day 42 (T3), 56 (T4), 70 (T5), 84 (T6), 98 (T7), and 112 (T8). Breast muscle samples were collected from four birds randomly selected per treatment every 14 days. The obtained isotope results were submitted to multivariate analysis of variance (MANOVA) with the aid of the GLM procedure of statistical SAS program. Treatments were different from T1 when birds were sacrificed at least two weeks after the diet was changed. T2 results were different from T1 in all evaluated periods. It was concluded that it is possible to trace poultry offal meal inclusion in a strictly vegetable diet after the diet was changed for at least 14 days.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Our goal was to trace the inclusion of poultry offal meal (OM) in diets by using carbon (13C/12C) and nitrogen (15N/14N) isotopic ratios of different tissues in order to contribute for the development of an independent technology for the certification of the feeding of broilers reared on diets with no addition of animal ingredients. Eighty one-day-old chicks were randomly distributed into five experimental treatments, that is, diets containing increasing levels of OM inclusion (0, 2, 4, 8 and 16% OM), with four replicates of four birds each. At 42 days of age, four birds per treatment (n=4) were randomly selected, weighed, and sacrificed to collect breast muscle (Pectoralis major), keel and tibia samples to determine their isotopic ratios (13C/12C e 15N/14N). It was observed that 13C and 15N enrichment increased as a function of increasing OM inclusion in all diets. The analyses of the Pectoralis major showed that that only treatments with 8 and 16% OM dietary inclusion were different form those in the control group (0% OM). on the other hand, when the keel and tibia were analyzed, in addition to 8 and 16% OM), the treatment with 4% OM inclusion was also different from the control group. The use of isotopic ratios of stable carbon and nitrogen isotopes is an alternative to trace OM inclusion in broiler diets as it is capable of tracing OM levels below those usually practiced by the poultry industry in Brazil.
Resumo:
The structural basis for the homotropic inhibition of pantothenate synthetase by the substrate pantoate was investigated by X-ray crystallography and high-resolution NMR spectroscopic methods. The tertiary structure of the dimeric N-terminal domain of Escherichia coli pantothenate synthetase, determined by X-ray crystallography to a resolution of 1.7 Å, showed a second molecule of pantoate bound in the ATP-binding pocket. Pantoate binding to the ATP-binding site induced large changes in structure, mainly for backbone and side chain atoms of residues in the ATP binding HXGH(34–37) motif. Sequence-specific NMR resonance assignments and solution secondary structure of the dimeric N-terminal domain, obtained using samples enriched in 2H, 13C, and 15N, indicated that the secondary structural elements were conserved in solution. Nitrogen-15 edited two-dimensional solution NMR chemical shift mapping experiments revealed that pantoate, at 10 mm, bound at these two independent sites. The solution NMR studies unambiguously demonstrated that ATP stoichiometrically displaced pantoate from the ATP-binding site. All NMR and X-ray studies were conducted at substrate concentrations used for enzymatic characterization of pantothenate synthetase from different sources [Jonczyk R & Genschel U (2006) J Biol Chem 281, 37435–37446]. As pantoate binding to its canonical site is structurally conserved, these results demonstrate that the observed homotropic effects of pantoate on pantothenate biosynthesis are caused by competitive binding of this substrate to the ATP-binding site. The results presented here have implications for the design and development of potential antibacterial and herbicidal agents.
Resumo:
Measurement of heteronuclear spin-lattice relaxation times is hampered by both low natural abundance and low detection sensitivity. Combined with typically long relaxation times, this results in extended acquisition times which often renders the experiment impractical. Recently a variant of dynamic nuclear polarisation has been demonstrated in which enhanced nuclear spin polarisation, generated in the cryo-solid state, is transferred to the liquid state for detection. Combining this approach with small flip angle pulse trains, similar to the FLASH-T(1) imaging sequence, allows the rapid determination of spin-lattice relaxation times. In this paper we explore this method and its application to the measurement of T(1) for both carbon-13 and nitrogen-15 at natural abundance. The effects of RF inhomogeneity and the influence of proton decoupling in the context of this experiment are also investigated.
Resumo:
Two series of 1-alkylpyridinium and N-alkyl-N-methylpiperidinium ionic liquids fiinctionalized with a nitrile group at the end of the alkyl chain have been synthesized. Structural modifications include a change of the alkyl spacer length between the nitrile group and the heterocycle of the cationic core, as well as adding methyl or ethyl substituents on different positions of the pyridinium ring. The anions are the bromide and the bis(trifluoromethylsulfonyl)imide ion. All the bis(trifluoromethylsulfonyl)imide salts as well as the bromide salts with a long alkyl spacer were obtained as viscous liquids at room temperature, but some turned out to be supercooled liquids. In addition, pyrrolidinium and piperidinium ionic liquids with two nitrile functions attached to the heterocyclic core have been prepared. The crystal structures of seven pyridinium bis(trifluoromethylsulfonyl)imide salts are reported. Quantum chemical calculations have been performed on model cations and ion pairs with the bis(trifluoromethylsulfonyl)imide anion. A continuum model has been used to take solvation effects into account. These calculations show that the natural partial charge on the nitrogen atom of the nitrile group becomes more negative when the length of the alkyl spacer between the nitrile functional group and the heterocyclic core of the cation is increased. Methyl or methoxy substituents on the pyridinium ring slightly increase the negative charge on the nitrile nitrogen atom due to their electron-donating abilities. The position of the substituent (ortho, meta, or para) has only a very minor effect on the charge of the nitrogen atom. The N-15 NMR spectra of the bis(trifluoromethylsulfonyl)imide ionic liquids were recorded with the nitrogen-15 nucleus at its natural abundance. The chemical shift of the N-15 nucleus of the nitrile nitrogen atom could be correlated with the calculated negative partial charge on the nitrogen atom.
Resumo:
Although shorebirds spending the winter in temperate areas frequently use estuarine and supratidal (upland) feeding habitats, the relative contribution of each habitat to individual diets has not been directly quantified. We quantified the proportional use that Calidris alpina pacifica (Dunlin) made of estuarine vs. terrestrial farmland resources on the Fraser River Delta, British Columbia, using stable isotope analysis (δ13C, δ15N) of blood from 268 Dunlin over four winters, 1997 through 2000. We tested for individual, age, sex, morphological, seasonal, and weather-related differences in dietary sources. Based on single- (δ13C) and dual-isotope mixing models, the agricultural habitat contributed approximately 38% of Dunlin diet averaged over four winters, with the balance from intertidal flats. However, there was a wide variation among individuals in the extent of agricultural feeding, ranging from about 1% to 95% of diet. Younger birds had a significantly higher terrestrial contribution to diet (43%) than did adults (35%). We estimated that 6% of adults and 13% of juveniles were obtaining at least 75% of their diet from terrestrial sources. The isotope data provided no evidence for sex or overall body size effects on the proportion of diet that is terrestrial in origin. The use of agricultural habitat by Dunlin peaked in early January. Adult Dunlin obtained a greater proportion of their diet terrestrially during periods of lower temperatures and high precipitation, whereas no such relationship existed for juveniles. Seasonal variation in the use of agricultural habitat suggests that it is used more during energetically stressful periods. The terrestrial farmland zone appears to be consistently important as a habitat for juveniles, but for adults it may provide an alternative feeding site used as a buffer against starvation during periods of extreme weather. Loss or reduction of agricultural habitat adjacent to estuaries may negatively impact shorebird fitness, with juveniles disproportionately affected.
Resumo:
Increases in Snow Goose (Chen caerulescens) populations and large-scale habitat changes in North America have contributed to the concentration of migratory waterfowl on fewer wetlands, reducing resource availability, and enhancing risks of disease transmission. Predicting wintering locations of migratory individuals is critical to guide wildlife population management and habitat restoration. We used stable carbon (δ13C), nitrogen (δ15N), and hydrogen (δ2H) isotope ratios in muscle tissue of wintering Snow Geese to discriminate four major wintering areas, the Playa Lake Region, Texas Gulf Coast, Louisiana Gulf Coast, and Arkansas, and infer the wintering locations of individuals collected later during the 2007 and 2008 spring migrations in the Rainwater Basin (RWB) of Nebraska. We predicted the wintering ground derivation of migrating Snow Geese using a likelihood-based approach. Our three-isotope analysis provided an efficient discrimination of the four wintering areas. The assignment model predicted that 53% [95% CI: 37-69] of our sample of Snow Geese from the RWB in 2007 had most likely originated in Louisiana, 38% [23-54] had wintered on Texas Gulf Coast, and 9% [0-20] in Arkansas; the assessment suggested that 89% [73-100] of our 2008 sample had most likely come from Texas Gulf Coast, 9% [0-27] from Louisiana Gulf Coast, and 2% [0-9] from Arkansas. Further segregation of wintering grounds and additional sampling of spring migrating Snow Geese would refine overall assignment and help explain interannual variations in migratory connectivity. The ability to distinguish origins of northbound geese can support the development of spatially-adaptive management strategies for the midcontinent Snow Goose population. Establishing migratory connectivity using isotope assignment techniques can be extended to other waterfowl species to determine critical habitat, evaluate population energy requirements, and inform waterfowl conservation and management strategies.
Resumo:
O objetivo deste trabalho foi rastrear a inclussão de farinhas de origem animal em rações para frango de corte com ou sem levedura de cana-de-açúcar e farelo de trigo, por meio da análise do músculo peitoral das aves pelas técnicas dos isótopos estáveis de carbono e nitrogênio. Foram utilizados 210 pintos machos (Cobb), com um dia de idade, distribuídos aleatoriamente em sete tratamentos de 30 aves cada, tendo sido um tratamento controle (dieta vegetal) e seis com inclusão de farinha de carne e ossos bovina ou farinha de vísceras de aves na dieta, com ou sem levedura de cana-de-açúcar e farelo de trigo. Aos 42 dias de idade, foram abatidas quatro aves, por tratamento, escolhidas ao acaso, cujo músculo peitoral foi retirado para análise da razão isotópica. Os resultados obtidos foram submetidos à análise multivariada. Os tratamentos experimentais diferiram do tratamento controle, e foi identificada a inclusão de farinha de origem animal, pelas técnicas dos isótopos estáveis, mesmo com inclusão de levedura ou farelo de trigo na dieta.
Resumo:
Rastrearam-se a inclusão de farinha de vísceras de aves (FV) em dietas de frangos por ocasião de eventual substituição de dieta contendo FV por dieta estritamente vegetal, e vice-versa, por isótopos estáveis de carbono e de nitrogênio. Foram distribuídos aleatoriamente 192 pintos de um dia de idade, em 12 tratamentos com quatro repetições de quatro aves. Os tratamentos constituíam-se de dieta de vegetais (VG) passando para dietas contendo FV, após certa idade, ou o inverso, em que as aves começaram se alimentando de dieta FV e depois passaram para dieta VG. Aos 42 dias de idade, foram coletadas amostras de músculo peitoral (Pectoralis major), quilha e tíbia, para determinação das razões isotópicas (13C/12C e 15N/14N). A técnica dos isótopos estáveis somente não foi capaz de rastrear a utilização de FV na alimentação de frangos de corte, quando esse ingrediente fez parte da dieta das aves apenas nos primeiros sete, 14 ou 21 dias de idade. Entretanto, há a possibilidade da aplicação dessa técnica em aves mais jovens, amostradas antes de eventual mudança de dieta, pois elas podem ter a assinatura isotópica da alimentação estabilizada em torno de duas semanas de idade.