144 resultados para needleless electrospinning
Resumo:
The aim of this study was to evaluate the behavior of reinforced composites with polyamide 6 fibers aligned (6000 rpm) and alignment (120 rpm) with or without CNT using the flexural strength test. After preparation of nanofibers aligned nylon 6 (6000 rpm) and alignment (120 rpm) with and without incorporation of nanotube carbon by the method of electrospinning, were performed one control group (n = 10) and 4 experimental groups (n = 40) G1: Control (just resin Charisma - Heraeus Kulzer) ;G2 Resin + N6 aligned (6000 rpm) + CNT; G3:Resin + N6 alignment (120 rpm) + CNT; G4: Resin + aligned ( 6000 rpm) N6. G5: Resin + N6 alignment (120 rpm). The fibers were cut to the dimensions of 0,3 x 15 mm and were applied an adhesive at the surface (Single Bond 2) for 5 min and cured. In the matrix, was added resin in the proximal box (Charisma A2, Heraeus Kulzer) and cured for 40 s. (power 1100 mW / cm²). A first layer of resin and on the resin was deposited. The resin layers specimens were light irradiated with three overlapping exposures delivered. For each resin layer were light irradiated for 40 sec. The samples were tested with a cross-speed of 1 mm / min, and a 50 Kgf at Universal testing machine (EMIC mod.DL2000). The Dunnet test showed that only the nanotube group was significantly different from the control group. The ANOVA two-way indicates that the nanotube factor was statistically significant (p < 0.05) and there is no interaction between factors and orientation nanotube. The presence of nanotube showed lower fracture resistance values for aligned and unaligned groups. The results of this study showed that the orientation of the fibers does not influence the strength of composite resins and the incorporation of nylon nanofibers with carbon nanotubes decreased the fracture resistance values. The presence of the fibers has not been able to improve the strength of the material in any of the...
Resumo:
A hybrid material with excellent mechanical and biological properties is produced by electrospinning a co-solution of PET and collagen. The fibers are mapped using SEM, confocal Raman microscopy and collagenase digestion assays. Fibers of different compositions and morphologies are intermingled within the same membrane, resulting in a heterogeneous scaffold. The collagen distribution and exposure are found to depend on the PET/collagen ratio. The materials are chemically and mechanically characterized and biologically tested with fibroblasts (3T3-L1) and a HUVEC culture in vitro. All of the hybrid scaffolds show better cell attachment and proliferation than PET. These materials are potential candidates to be used as vascular grafts.
Resumo:
Formation of oriented or aligned micro- and nanofibers using biocompatible materials opens the possibility to obtain engineered tissues that can be used in medicine, environmental engineering, security and defense, among other applications. Pectin, a heteropolysaccharide, is a promising material to be incorporated into the fibers because, besides being biocompatible, this material is also biodegradable and bioactive. In this work, the formation of oriented fibers using solutions containing pectin and polyethylene oxide (biocompatible polymers), and chloroform (as the solvent) is investigated. The injection of solution into an intense electric field defined between two parallel electrodes was used to obtain oriented fibers. This novel approach is a modification of the conventional electrospinning process. The presence of pectin in the fibers was confirmed by FTIR analysis. Fibers with diameters of hundreds of nanometers and several centimeters long can be collected. The incorporation of pectin leads to a higher variation of the diameter of the fibers, and a trend to larger fiber diameters. This behavior can be related to the presence of pectin clusters in the fibers. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.057203jes] All rights reserved.
Resumo:
Electrospinning is used to produce fibers in the nanometer range by stretching a polymeric jet using electric fields of high magnitude. Chitosan is an abundant natural polymer that can be used to obtain biocompatible nanostructured membranes. The objectives of this work were to obtain nanostructured membranes based on blends of chitosan and polyoxyethylene (PEO), and evaluate their thermal and morphological properties, as well as their in vitro biocompatibility by agar diffusion cytotoxicity tests for three different cell lines. A nanostructured fibrous membrane with fiber diameters in the order of 200 nm was obtained, which presented a rough surface and thickness ranging from one to two millimeters. The results of the cytotoxicity tests evidenced that the chitosan/PEO membranes are non-toxic to the cells studied in this work. Further, the electrospinning technique was effective in obtaining nanostructured chitosan/PEO membranes, which showed biocompatibility according to in vitro preliminary tests using the cell lines.
Resumo:
Tissue engineering is a discipline that aims at regenerating damaged biological tissues by using a cell-construct engineered in vitro made of cells grown into a porous 3D scaffold. The role of the scaffold is to guide cell growth and differentiation by acting as a bioresorbable temporary substrate that will be eventually replaced by new tissue produced by cells. As a matter or fact, the obtainment of a successful engineered tissue requires a multidisciplinary approach that must integrate the basic principles of biology, engineering and material science. The present Ph.D. thesis aimed at developing and characterizing innovative polymeric bioresorbable scaffolds made of hydrolysable polyesters. The potentialities of both commercial polyesters (i.e. poly-e-caprolactone, polylactide and some lactide copolymers) and of non-commercial polyesters (i.e. poly-w-pentadecalactone and some of its copolymers) were explored and discussed. Two techniques were employed to fabricate scaffolds: supercritical carbon dioxide (scCO2) foaming and electrospinning (ES). The former is a powerful technology that enables to produce 3D microporous foams by avoiding the use of solvents that can be toxic to mammalian cells. The scCO2 process, which is commonly applied to amorphous polymers, was successfully modified to foam a highly crystalline poly(w-pentadecalactone-co-e-caprolactone) copolymer and the effect of process parameters on scaffold morphology and thermo-mechanical properties was investigated. In the course of the present research activity, sub-micrometric fibrous non-woven meshes were produced using ES technology. Electrospun materials are considered highly promising scaffolds because they resemble the 3D organization of native extra cellular matrix. A careful control of process parameters allowed to fabricate defect-free fibres with diameters ranging from hundreds of nanometers to several microns, having either smooth or porous surface. Moreover, versatility of ES technology enabled to produce electrospun scaffolds from different polyesters as well as “composite” non-woven meshes by concomitantly electrospinning different fibres in terms of both fibre morphology and polymer material. The 3D-architecture of the electrospun scaffolds fabricated in this research was controlled in terms of mutual fibre orientation by properly modifying the instrumental apparatus. This aspect is particularly interesting since the micro/nano-architecture of the scaffold is known to affect cell behaviour. Since last generation scaffolds are expected to induce specific cell response, the present research activity also explored the possibility to produce electrospun scaffolds bioactive towards cells. Bio-functionalized substrates were obtained by loading polymer fibres with growth factors (i.e. biomolecules that elicit specific cell behaviour) and it was demonstrated that, despite the high voltages applied during electrospinning, the growth factor retains its biological activity once released from the fibres upon contact with cell culture medium. A second fuctionalization approach aiming, at a final stage, at controlling cell adhesion on electrospun scaffolds, consisted in covering fibre surface with highly hydrophilic polymer brushes of glycerol monomethacrylate synthesized by Atom Transfer Radical Polymerization. Future investigations are going to exploit the hydroxyl groups of the polymer brushes for functionalizing the fibre surface with desired biomolecules. Electrospun scaffolds were employed in cell culture experiments performed in collaboration with biochemical laboratories aimed at evaluating the biocompatibility of new electrospun polymers and at investigating the effect of fibre orientation on cell behaviour. Moreover, at a preliminary stage, electrospun scaffolds were also cultured with tumour mammalian cells for developing in vitro tumour models aimed at better understanding the role of natural ECM on tumour malignity in vivo.
Resumo:
In recent years, nanotechnologies have led to the production of materials with new and sometimes unexpected qualities through the manipulation of nanoscale components. This research aimed primarily to the study of the correlation between hierarchical structures of hybrid organic-inorganic materials such as conductive polymer composites (CPCs). Using a bottom-up methodology, we could synthesize a wide range of inorganic nanometric materials with a high degree of homogeneity and purity, such as thiol capped metal nanoparticles, stoichiometric geomimetic chrysotile nanotubes and metal dioxide nanoparticles. It was also possible to produce inorganic systems formed from the interaction between the synthesized materials. These synthesized materials and others like multiwalled carbon nanotubes and grapheme oxide were used to produce conductive polymer composites. Electrospinning causes polymer fibers to become elongated using an electric field. This technique was used to produce fibers with a nanometric diameter of a polymer blend based on two different intrinsically conducting polymers polymers (ICPs): polyaniline (PANI) and poly(3-hexylthiophene) (P3HT). Using different materials as second phase in the initial electrospun polymer fibers caused significant changes to the material hierarchical structure, leading to the creation of CPCs with modified electrical properties. Further study of the properties of these new materials resulted in a better understanding of the electrical conductivity mechanisms in these electrospun materials.
Resumo:
This PhD work was aimed to design, develop, and characterize gelatin-based scaffolds, for the repair of defects in the muscle-skeletal system. Gelatin is a biopolymer widely used for pharmaceutical and medical applications, thanks to its biodegradability and biocompatibility. It is obtained from collagen via thermal denaturation or chemical-physical degradation. Despite its high potential as biomaterial, gelatin exhibits poor mechanical properties and a low resistance in aqueous environment. Crosslinking treatment and enrichment with reinforcement materials are thus required for biomedical applications. In this work, gelatin based scaffolds were prepared following three different strategies: films were prepared through the solvent casting method, electrospinning technique was applied for the preparation of porous mats, and 3D porous scaffolds were prepared through freeze-drying. The results obtained on films put into evidence the influence of pH, crosslinking and reinforcement with montmorillonite (MMT), on the structure, stability and mechanical properties of gelatin and MMT/gelatin composites. The information acquired on the effect of crosslinking in different conditions was utilized to optimize the preparation procedure of electrospun and freeze-dried scaffolds. A successful method was developed to prepare gelatin nanofibrous scaffolds electrospun from acetic acid/water solution and stabilized with a non-toxic crosslinking agent, genipin, able to preserve their original morphology after exposure to water. Moreover, the co-electrospinning technique was used to prepare nanofibrous scaffolds at variable content of gelatin and polylactic acid. Preliminary in vitro tests indicated that the scaffolds are suitable for cartilage tissue engineering, and that their potential applications can be extended to cartilage-bone interface tissue engineering. Finally, 3D porous gelatin scaffolds, enriched with calcium phosphate, were prepared with the freeze-drying method. The results indicated that the crystallinity of the inorganic phase influences porosity, interconnectivity and mechanical properties. Preliminary in vitro tests show good osteoblast response in terms of proliferation and adhesion on all the scaffolds.
Resumo:
This PhD Thesis is focused on the development of fibrous polymeric scaffolds for tissue engineering applications and on the improvement of scaffold biomimetic properties. Scaffolds were fabricated by electrospinning, which allows to obtain scaffolds made of polymeric micro or nanofibers. Biomimetism was enhanced by following two approaches: (1) the use of natural biopolymers, and (2) the modification of the fibers surface chemistry. Gelatin was chosen for its bioactive properties and cellular affinity, however it lacks in mechanical properties. This problem was overcome by adding poly(lactic acid) to the scaffold through co-electrospinning and mechanical properties of the composite constructs were assessed. Gelatin effectively improves cell growth and viability and worth noting, composite scaffolds of gelatin and poly(lactic acid) were more effective than a plain gelatin scaffold. Scaffolds made of pure collagen fibers were fabricated. Modification of collagen triple helix structure in electrospun collagen fibers was studied. Mechanical properties were evaluated before and after crosslinking. The crosslinking procedure was developed and optimized by using - for the first time on electrospun collagen fibers - the crosslinking reactant 1,4-butanediol diglycidyl ether, with good results in terms of fibers stabilization. Cell culture experiments showed good results in term of cell adhesion and morphology. The fiber surface chemistry of electrospun poly(lactic acid) scaffold was modified by plasma treatment. Plasma did not affect thermal and mechanical properties of the scaffold, while it greatly increased its hydrophilicity by the introduction of carboxyl groups at the fiber surface. This fiber functionalization enhanced the fibroblast cell viability and spreading. Surface modifications by chemical reactions were conducted on electrospun scaffolds made of a polysophorolipid. The aim was to introduce a biomolecule at the fiber surface. By developing a series of chemical reactions, one oligopeptide every three repeating units of polysophorolipid was grafted at the surface of electrospun fibers.
Resumo:
The functionalization of substrates through the application of nanostructured coatings allows to create new materials, with enhanced properties. In this work, the development of self-cleaning and antibacterial textiles, through the application of TiO2 and Ag based nanostructured coatings was carried out. The production of TiO2 and Ag functionalized materials was achieved both by the classical dip-padding-curing method and by the innovative electrospinning process to obtain nanofibers doped with nano-TiO2 and nano-Ag. In order to optimize the production of functionalized textiles, the study focused on the comprehension of mechanisms involved in the photocatalytic and antibacterial processes and on the real applicability of the products. In particular, a deep investigation on the relationship between nanosol physicochemical characteristics, nanocoating properties and their performances was accomplished. Self-cleaning textiles with optimized properties were obtained by properly purifying and applying commercial TiO2 nanosol while the studies on the photocatalytic mechanism operating in self-cleaning application demonstrated the strong influence of hydrophilic properties and of interaction surface/radicals on final performance. Moreover, a study about the safety in handling of nano-TiO2 was carried out and risk remediation strategies, based on “safety by design” approach, were developed. In particular, the coating of TiO2 nanoparticles by a SiO2 shell was demonstrated to be the best risk remediation strategy in term of biological response and preserving of photoreactivity. The obtained results were confirmed determining the reactive oxygen species production by a multiple approach. Antibacterial textiles for biotechnological applications were also studied and Ag-coated cotton materials, with significant anti-bacterial properties, were produced. Finally, composite nanofibers were obtained merging biopolymer processing and sol-gel techniques. Indeed, electrospun nanofibers embedded with TiO2 and Ag NPs, starting from aqueous keratin based formulation were produced and the photocatalytic and antibacterial properties were assessed. The results confirmed the capability of electrospun keratin nanofibers matrix to preserve nanoparticle properties.
Resumo:
This PhD thesis focused on nanomaterial (NM) engineering for occupational health and safety, in the frame of the EU project “Safe Nano Worker Exposure Scenarios (SANOWORK)”. Following a safety by design approach, surface engineering (surface coating, purification process, colloidal force control, wet milling, film coating deposition and granulation) were proposed as risk remediation strategies (RRS) to decrease toxicity and emission potential of NMs within real processing lines. In the first case investigated, the PlasmaChem ZrO2 manufacturing, the colloidal force control applied to the washing of synthesis rector, allowed to reduce ZrO2 contamination in wastewater, performing an efficient recycling procedure of ZrO2 recovered. Furthermore, ZrO2 NM was investigated in the ceramic process owned by CNR-ISTEC and GEA-Niro; the spray drying and freeze drying techniques were employed decreasing NM emissivity, but maintaining a reactive surface in dried NM. Considering the handling operation of nanofibers (NFs) obtained through Elmarco electrospinning procedure, the film coating deposition was applied on polyamide non-woven to avoid free fiber release. For TiO2 NF the wet milling was applied to reduce and homogenize the aspect ratio, leading to a significant mitigation of fiber toxicity. In the Colorobbia spray coating line, Ag and TiO2 nanosols, employed to transfer respectively antibacterial or depolluting properties to different substrates, were investigated. Ag was subjected to surface coating and purification, decreasing NM toxicity. TiO2 was modified by surface coating, spray drying and blending with colloidal SiO2, improving its technological performance. In the extrusion of polymeric matrix charged with carbon nanotube (CNTs) owned by Leitat, the CNTs used as filler were granulated by spray drying and freeze spray drying techniques, allowing to reduce their exposure potential. Engineered NMs tested by biologists were further investigated in relevant biological conditions, to improve the knowledge of structure/toxicity mechanisms and obtain new insights for the design of safest NMs.
Resumo:
Hydrophile Polyurethanpartikel wurden mittels in inversen Miniemulsionen durchgeführten Polyadditionsreaktionen hergestellt. Wie durch FT-IR-Spektroskopie gezeigt wurde, konnte durch die Abwesenheit von Wasser in dem verwendeten System die Entstehung von Harnstoffbindungen vermieden werden. Das Molekulargewicht der erhaltenen Polyurethane konnte durch verschiedene Parameter, wie zum Beispiel die Hydrophobizität der kontinuierlichen Phase oder die Zugabe von DMSO zur dispersen Phase, beeinflusst werden. Die höchsten Molekulargewichte (Mn von bis zu 19000 g•mol-1) wurden mit Isopar M als kontinuierlicher Phase erhalten. Der zweite Teil der Arbeit beschäftigt sich mit der Herstellung anisotroper Polystyrolpartikel über eine Film-Dehnungs-Methode. Polystyrol/Polyvinylalkohol-Filme wurden oberhalb der Glasübergangstemperatur von Polystyrol und Polyvinylalkohol (Matrix) uniaxial oder biaxial gedehnt, wodurch ellipsenförmige oder scheibenförmige Partikel entstanden. Es zeigte sich, dass die Redispergierbarkeit der verstreckten Partikel in Wasser stark von deren Oberflächenfunktionalisierung abhängig war. Die beste Redispergierbarkeit (46%) wurde für Sulfonat-funktionalisierte Partikel erhalten. Als eine alternative Methode zur Herstellung anisotroper Polymerpartikel wurde im letzten Teil der vorliegenden Arbeit Elektrospinnen eingesetzt. Es konnte gezeigt werden, dass es prinzipiell möglich ist, ellipsenförmige PS-Partikel zu erhalten, deren Aspektverhältnis durch die Höhe der angelegten Spannung und den Abstand zwischen Spitze und Kollektor beeinflusst wurde. Neben PS-Partikeln konnten auch PMMA-Kapseln über Elektrospinnen verstreckt werden. Mittels der Film-Dehnungs-Methode konnte jedoch eine größere Vielfalt an Aspektverhältnissen hergestellt werden. Ein weiterer Nachteil gegenüber der Film-Dehnungs-Methode ist die relativ breite Größenverteilung der verstreckten Partikel. Jedoch ist Elektrospinnen im Gegensatz zur Film-Dehnungs-Methode ein kontinuierlicher Prozess und könnte auch für die Herstellung anisotroper Partikel von Polymeren mit einer hohen Glasübergangstemperatur verwendet werden.
Resumo:
This dissertation will be focused on the characterization of an atmospheric pressure plasma jet source with an application oriented diagnostic approach and the description of processes supported by this plasma source. The plasma source investigated is a single electrode plasma jet. Schlieren images, optical emission spectra, temperature and heat flux profiles are analyzed to deeply investigate the fluid dynamic, the chemical composition and the thermal output of the plasma generated with a nanosecond-pulsed high voltage generator. The maximum temperature measured is about 45 °C and values close to the room temperature are reached 10 mm down the source outlet, ensuring the possibility to use the plasma jet for the treatment of thermosensitive materials, such as, for example, biological substrate or polymers. Electrospinning of polymeric solution allows the production of nanofibrous non-woven mats and the plasma pre-treatment of the solutions leads to the realization of defect free nanofibers. The use of the plasma jet allows the electrospinnability of a non-spinnable poly(L-lactic acid) (PLLA) solution, suitable for the production of biological scaffold for the wound dressing.
Resumo:
Die Selbstorganisation von amphiphilen Molekülen wird genutzt, um in Lösung, auf der Oberfläche, in der festen Phase und an der Flüssig/Fest-Grenzfläche nanoskopisch strukturierte Materialien zu erhalten. Ziel hierbei ist es, die Dynamik der niedermolekularen Amphiphile mit der Stabilität der hochmolekularen Amphiphile zu vereinigen, um damit die Selbstorganisation der Moleküle zu kontrollieren. Drei Konzepte zur Strukturierung von Kohlenstoff durch Selbstorganisation werden vorgestellt. Im ersten Konzept werden aus Hexaphenylbenzol-Polyethylenglykol- (HPB-PEG) und Hexa-peri-hexabenzocoronen- (HBC-PEG) Derivaten wurmähnliche bzw. faserförmige Strukturen in wässriger Lösung erhalten. Der Wassergehalt in den Hydrogelfasern aus den HPB-PEG-Derivaten kann durch das Substitutionsmuster der Amphiphile und die Länge der PEG-Ketten eingestellt werden. Die Hydrogelfasern ähneln anders als die bisherigen Verfahren, die zur Faserherstellung verwendet werden (Extrudieren, Mikrofluid-Verarbeitung oder Elektrospinning), Systemen in der Natur. Der Beweis für die Bildung von Hydrogelfasern wird mittels spezieller Methoden der polarisierten und depolarisierten dynamischen Lichtstreuung erbracht. Im zweiten Konzept werden durch Elektronenbestrahlung und Pyrolyse von 3',4',5',6'-Tetraphenyl-[1,1':2',1''-terphenyl]-4,4''-dithiol homogene Kohlenstoffmembranen mit Poren erzeugt, die Anwendung in der Filtration finden können und im dritten Konzept wird die Selbstorganisation von einem ortho-verknüpften HPB-Trimer an der Flüssig/Fest-Grenzfläche untersucht. Auf diese Weise werden hochgeordnete lamellare Strukturen erhalten. In allen drei Konzepten sind die Geometrie und die Größe der Moleküle die entscheidenden Parameter zur Erzeugung definierter Strukturen.
Resumo:
Gli obbiettivi di questo lavoro di tesi risultano i seguenti: 1) Progettare e caratterizzare una tipologia di bundle bioriassorbibile attraverso la tecnica dell’elettrofilatura, composto da una miscela di acido poli-(L)lattico (PLLA) e collagene, che cerchi di mimare le proprietà meccaniche dei fascicoli di collagene tendineo umano ed equino; 2) Individuare una metodologia di assemblaggio multiscala dei bundle che permetta la creazione di uno scaffold in grado di mimare la struttura gerarchica di un tendine completo; 3) Applicare la filosofia traslazionale alla progettazione dello scaffold al fine di poter applicare tale tecnologia sia nell’ambito della medicina umana che in quella veterinaria, lavorando nel senso della medicina unica.
Resumo:
Tissue engineering has been increasingly brought to the scientific spotlight in response to the tremendous demand for regeneration, restoration or substitution of skeletal or cardiac muscle after traumatic injury, tumour ablation or myocardial infarction. In vitro generation of a highly organized and contractile muscle tissue, however, crucially depends on an appropriate design of the cell culture substrate. The present work evaluated the impact of substrate properties, in particular morphology, chemical surface composition and mechanical properties, on muscle cell fate. To this end, aligned and randomly oriented micron (3.3±0.8 μm) or nano (237±98 nm) scaled fibrous poly(ε-caprolactone) non-wovens were processed by electrospinning. A nanometer-thick oxygen functional hydrocarbon coating was deposited by a radio frequency plasma process. C2C12 muscle cells were grown on pure and as-functionalized substrates and analysed for viability, proliferation, spatial orientation, differentiation and contractility. Cell orientation has been shown to depend strongly on substrate architecture, being most pronounced on micron-scaled parallel-oriented fibres. Oxygen functional hydrocarbons, representing stable, non-immunogenic surface groups, were identified as strong triggers for myotube differentiation. Accordingly, the highest myotube density (28±15% of total substrate area), sarcomeric striation and contractility were found on plasma-coated substrates. The current study highlights the manifold material characteristics to be addressed during the substrate design process and provides insight into processes to improve bio-interfaces.