289 resultados para nanofibers
Resumo:
During the last years an increased interest about the reinforcement of laminated composites by means of polymeric nanofibers has been growth. During this master-degree-thesis work, unidirectional and plane-textile composites have been interleaved with Nylon 6.6, PCL and mixed (Nylon 6.6+PCL) nanofibrous mats and the DCB (mode I interlaminar fracture toughness), ENF (mode II interlaminar fracture toughness and DMA (damping capability) tests have been performed. Regarding the interlaminar fracture toughness, marked increases have been recorded; while further investigation about damping capability is requested.
Resumo:
A major weakness of composite materials is that low-velocity impact, introduced accidentally during manufacture, operation or maintenance of the aircraft, may result in delaminations between the plies. Therefore, the first part of this study is focused on mechanics of curved laminates under impact. For this aim, the effect of preloading on impact response of curved composite laminates is considered. By applying the preload, the stress through the thickness and curvature of the laminates increased. The results showed that all impact parameters are varied significantly. For understanding the contribution rate of preloading and pre-stress on the obtained results another test is designed. The interesting phenomenon is that the preloading can decrease the damaged area when the curvature of the both specimens is the same. Finally the effect of curvature type, concave and convex, is investigated under impact loading. In the second part, a new composition of nanofibrous mats are developed to improve the efficiency of curved laminates under impact loading. Therefore, at first some fracture tests are conducted to consider the effect of Nylon 6,6, PCL, and their mixture on mode I and mode II fracture toughness. For this goal, nanofibers are electrospun and interleaved between mid-plane of laminate composite to conduct mode I and mode II tests. The results shows that efficiency of Nylon 6,6 is better than PCL in mode II, while the effect of PCL on fracture toughness of mode I is more. By mixing these nanofibers the shortage of the individual nanofibers is compensated and so the Nylon 6,6/PCL nanofibers could increased mode I and II fracture toughness. Then all these nanofibers are used between all layers of composite layers to investigate their effect on damaged area. The results showed that PCL could decrease the damaged area about 25% and Nylon 6,6 and mixed nanofibers about 50%.
Resumo:
The synthesis, characterization and application of aqueous dispersions of superparamagnetic/polymer hybrid nanoparticles and capsules is described. Implementation of the superparamagnetic moiety into the polymer matrix enables a response of the nanomaterials towards an external magnetic field. Application of the external field is used for two main purposes: i) As heat generator, when an alternating magnetic field is applied. ii) As structuring agent to self-assemble superparamagnetic nanoparticles in the external field.rnIn the first part, superparamagnetic nanoparticles were used as heat generators in order to achieve a magnetic field induced release of an active compound from nanocontainers. To achieve such a release in remote-controlled fashion, the encapsulation of superparamagnetic nanoparticles into polymer nanocapsules was combined with the integration of a thermolabile compound into the shell of the nanocontainers. The magnetic nanoparticles acted as generators for heat, which decomposed the thermolabile compound. Pores were created in the degrading shell and an active substance was released.rn Additionally, the self-assembly of polymer nanoparticles, which were labeled with a superparamagnetic moiety as structuring agent, could be demonstrated. A combination of a magnetic field induced self-assembly and a sintering of neighboring particles upon an increase in temperature above the glass transition temperature of the polymer was used to form stable architectures. Various structures with tunable periodicity could be obtained ranging from smooth linear nanofibers to zigzag fibers. Besides solely creating linear architectures, the frugal process additionally allowed the creation of arrangements in analogy to more complex polymer architectures: By the introduction of defined junction points, the generation of branched structures and networks was demonstrated. Additionally, by tailoring the interaction of differently sized particles, the preparation of nanoparticle arrangements in statistical or block copolymer fashion was shown. Moreover, a reversible linear assembly and linkage of the nanoparticles was demonstrated following a lock/unlock mechanism. Therefore, the particles were locked in their linear assembly by a stable iron(III) hydroxamato-complex and unlocked by addition of a reducing agent and formation of a less stable iron(II)-complex.Further, in various projects with collaboration partners, nanoparticles and nanocapsules were labeled with a superparamagnetic moiety for their use as contrast agents in magnetic resonance imaging or as magnetically separable dispersions.
Resumo:
Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn
Resumo:
Cellulose nanofibers are an attractive component of a broad range of nanomaterials. Their intriguing mechanical properties and low cost, as well as the renewable nature of cellulose make them an appealing alternative to carbon nanotubes (CNTs), which may pose a considerable health risk when inhaled. Little is known, however, concerning the potential toxicity of aerosolized cellulose nanofibers. Using a 3D in vitro triple cell coculture model of the human epithelial airway barrier, it was observed that cellulose nanofibers isolated from cotton (CCN) elicited a significantly (p < 0.05) lower cytotoxicity and (pro-)inflammatory response than multiwalled CNTs (MWCNTs) and crocidolite asbestos fibers (CAFs). Electron tomography analysis also revealed that the intracellular localization of CCNs is different from that of both MWCNTs and CAFs, indicating fundamental differences between each different nanofibre type in their interaction with the human lung cell coculture. Thus, the data shown in the present study highlights that not only the length and stiffness determine the potential detrimental (biological) effects of any nanofiber, but that the material used can significantly affect nanofiber-cell interactions.
Resumo:
Electrospinning uses electrostatic forces to create nanofibers that are far smaller than conventional fiber spinning process. Nanofibers made with chitosan were created and techniques to control fibers diameter and were well developed. However, the adsorption of porcine parvovirus (PPV) was low. PPV is a small, nonenveloped virus that is difficult to remove due to its size, 18-26 nm in diameter, and its chemical stability. To improve virus adsorption, we functionalized the nanofibers with a quaternized amine, forming N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride (HTCC). This was blended with additives to increase the ability to form HTCC nanofibers. The additives changed the viscosity and conductivity of the electrospinning solution. We have successfully synthesized and functionalized HTCC nanofibers that absorb PPV. HTCC blend with graphene have the ability to remove a minimum of 99% of PPV present in solution.
Resumo:
The wound healing promoting effect of negative wound pressure therapies (NPWT) takes place at the wound interface. The use of bioactive substances at this site represents a major research area for the development of future NPWT therapies. To assess wound healing kinetics in pressure ulcers treated by NPWT with or without the use of a thin interface membrane consisting of poly-N-acetyl glucosamine nanofibers (sNAG) a prospective randomized clinical trial was performed. The safety of the combination of NPWT and sNAG was also assessed in patients treated with antiplatelet drugs. In the performed study, the combination of NPWT and sNAG in 10 patients compared to NPWT alone in 10 patients promoted wound healing due to an improved contraction of the wound margins (p = 0.05) without a change in wound epithelization. In 6 patients treated with antiplatelet drugs no increased wound bleeding was observed in patients treated by NPWT and sNAG. In conclusion, the application of thin membranes of sNAG nanofibers at the wound interface using NPWT was safe and augmented the action of NPWT leading to improved wound healing due to a stimulation of wound contraction.
Resumo:
Amorphous carbon nanofibers (CNFs), produced by the polymer blend technique, are activated by CO2 (ACNFs). Monoliths are synthesized from the precursor and from some ACNFs. Morphology and textural properties of these materials are studied. When compared with other activating agents (steam and alkaline hydroxides), CO2 activation renders suitable yields and, contrarily to most other precursors, turns out to be advantageous for developing and controlling their narrow microporosity (< 0.7 nm), VDR(CO2). The obtained ACNFs have a high compressibility and, consequently, a high packing density under mechanical pressure which can also be maintained upon monolith synthesis. H2 adsorption is measured at two different conditions (77 K / 0.11 MPa, and 298 K / 20 MPa) and compared with other activated carbons. Under both conditions, H2 uptake depends on the narrow microporosity of the prepared ACNFs. Interestingly, at room temperature these ACNFs perform better than other activated carbons, despite their lower porosity developments. At 298 K they reach a H2 adsorption capacity as high as 1.3 wt.%, and a remarkable value of 1 wt.% in its mechanically resistant monolith form.
Resumo:
The hybrid structure of Fe2O3 nanoparticles/TiO2 nanofibers (NFs), combines the merits of large surface areas of TiO2 NFs and absorption in ultraviolet light–visible light range. This structure can be used for many applications such as photoelectrochemical water splitting and photo-catalysis. Here, a sol-flame method is used for depositing Fe2O3 on TiO2 NFs that were prepared by hydrothermal on Ti sheets. The obtained materials were characterized by XRD, SEM, UV/Vis diffuse reflectance, Raman, and XPS. The results revealed the formation of rutile and anatase crystalline phases together with Fe2O3. This process moves the absorption threshold of TiO2 NFs support into visible spectrum range and enhances the photocurrent in comparison to bare TiO2 NFs, although no hole scavenger was used. The impedance measurement at low and high frequencies revealed an increase in series resistance and a decrease in resistance of charge transfer with sol-flame treatment time. A mechanism for explaining the charge transfer in these TiO2 NFs decorated with Fe2O3 nanoparticles was proposed.
Resumo:
A series of mesoporous Al2O3 samples with different porous structures and phases were prepared and used as supports for Cu/Al2O3 catalysts. These catalysts were characterized by N-2 adsorption, NMR, TGA, XRD, and UV - vis spectroscopic techniques and tested for the catalytic reaction of N2O decomposition. The activity increased with the increasing calcination temperatures of supports from 450 to 900 degreesC; however, a further increase in calcination temperature up to 1200 degreesC resulted in a significant reduction in activity. Characterization revealed that the calcination temperatures of supports influenced the porous structures and phases of the supports, which in turn affected the dispersions, phases, and activities of the impregnated copper catalyst. The different roles of surface spinel, bulk CuAl2O4, and bulk CuO is clarified for N2O catalytic decomposition. Two mechanism schemes were thus proposed to account for the varying activities of different catalysts.
Resumo:
The dielectric behavior of polyacrylonitrile derived carbon nanofibers formed at different carbonization temperatures was investigated using impedance spectroscopy. The impedance data are presented in the form of Cole-Cole plots and four equivalent electrical circuits are derived. It is found that by increasing carbonization temperature from 500 to 800 °C, a strong capacitive element in the parallel equivalent circuit is transformed into an inductive element, while the contact resistance and parallel resistance are significantly decreased. Along with the morphological and chemical structural evolution, respectively witnessed by scanning electron microscopy and Raman spectroscopy, the dielectric transition deduced from the transformation of electrical circuits can be correlated to the proposed microstructural changes of polyacrylonitrile derived carbon nanofibers and the interaction/interference among them.
Resumo:
The basic functional element of microfiber photonics is a microfiber coil resonator (MCR), which potentially can perform filtering, time delay, and nonlinear transformations of electromagnetic waves, as well as sensing of the ambient medium. The first experimental demonstration of an MCR has been recently performed by researchers of the OFS Laboratories (Optical Fiber Communication Conference 2007, Postdeadline paper PDP46). This paper follows up on the later publication presenting a brief introduction to the theory, transmission properties and applications of optical micro/nanofibers and MCRs. Fabrication of MCRs in air and in liquid is reported. For the MCR immersed in liquid, the Q-factor exceeding 60 000 is achieved. © 2008 IEEE.
Resumo:
The basic functional element of microfiber photonics is a microfiber coil resonator (MCR), which potentially can perform filtering, time delay, and nonlinear transformations of electromagnetic waves, as well as sensing of the ambient medium. The first experimental demonstration of an MCR has been recently performed by researchers of the OFS Laboratories (Optical Fiber Communication Conference 2007, Postdeadline paper PDP46). This paper follows up on the later publication presenting a brief introduction to the theory, transmission properties and applications of optical micro/nanofibers and MCRs. Fabrication of MCRs in air and in liquid is reported. For the MCR immersed in liquid, the Q-factor exceeding 60 000 is achieved. © 2008 IEEE.